scholarly journals Review on biological activities in medicinal plants of acanthaceae family

2021 ◽  
Vol 12 (1) ◽  
pp. 315-333
Author(s):  
Manjula M ◽  
Sankar D S

Acanthaceae is popularly known as acanthus family which belong to mint order – lamiales. They are distributed from tropics to a temperate region such as India, Malaysia, Brunei, Indonesia, Brazil, Central America and Africa. Most members of this family are therapeutically important since they are in the up to date usage by ethnic communities. Andrographis paniculata, Clinacanthus nutans, Graptophyllum pictum, Hemigraphis alternata, Justicia gendarussa and Strobilanthes Crispus are some of the medicinal plants of Acanthaceae family. These plants are recognized for their biopharmaceutical potential usage in traditional medicine. These plants have a plethora of phytochemical compounds such as flavonoids, phenolic compounds, glycosides, terpenoids, benzenoids, quinine, triterpenoids and naphthoquinone present in various parts of the plant that plays a vital role in drug industries. The pharmacological properties of these plants such as anti-bacterial, anti-diabetic, anti-cancer, anti-oxidant, anti-inflammatory, anti-arthritis, hepatoprotective, anti-viral and anti-hypertensive are in general practice as an alternative and complementary medicine in both ethnobotanical and pharmacological fields. This article encompasses not only the comprehensive survey based on the electronic resources, scientific journals but also the books that summarize the botanical, phytochemical properties of these plants and also accentuate their significant role in both ethnobotanical and pharmacological fields. It is felt that this article would provide more insight into the health benefits of some plants of the Acanthaceae family.

2021 ◽  
Vol 12 (1) ◽  
pp. 315-333
Author(s):  
Manjula M ◽  
Sankar D S

Acanthaceae is popularly known as acanthus family which belong to mint order – lamiales. They are distributed from tropics to a temperate region such as India, Malaysia, Brunei, Indonesia, Brazil, Central America and Africa. Most members of this family are therapeutically important since they are in the up to date usage by ethnic communities. Andrographis paniculata, Clinacanthus nutans, Graptophyllum pictum, Hemigraphis alternata, Justicia gendarussa and Strobilanthes Crispus are some of the medicinal plants of Acanthaceae family. These plants are recognized for their biopharmaceutical potential usage in traditional medicine. These plants have a plethora of phytochemical compounds such as flavonoids, phenolic compounds, glycosides, terpenoids, benzenoids, quinine, triterpenoids and naphthoquinone present in various parts of the plant that plays a vital role in drug industries. The pharmacological properties of these plants such as anti-bacterial, anti-diabetic, anti-cancer, anti-oxidant, anti-inflammatory, anti-arthritis, hepatoprotective, anti-viral and anti-hypertensive are in general practice as an alternative and complementary medicine in both ethnobotanical and pharmacological fields. This article encompasses not only the comprehensive survey based on the electronic resources, scientific journals but also the books that summarize the botanical, phytochemical properties of these plants and also accentuate their significant role in both ethnobotanical and pharmacological fields. It is felt that this article would provide more insight into the health benefits of some plants of the Acanthaceae family.


Cosmetics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 89
Author(s):  
Duangjai Tungmunnithum ◽  
Nobuyuki Tanaka ◽  
Ayumi Uehara ◽  
Tsukasa Iwashina

Alpinia galanga is a well-known medicinal plant in Southeast Asia and has been used for a long time as food and medicine. A large number of flavonoid phytochemical compounds have been identified in various parts of this medicinal herb. Flavonoids are commonly known as attractive compounds that can be applied to cosmetic or cosmeceutical product development because of their antioxidant, anti-aging and many other potential biological activities. This recent review aims to illustrate and update the taxonomic status as well as the species description that will be helpful for a rigorous identification and authenticate the raw material or living specimen from A. galanga. The flavonoid phytochemical compounds and the bioactivity of this medicinal plant are also provided. The future perspectives and research directions of A. galanga and its flavonoids are pointed out in this study as well.


2019 ◽  
Vol 8 (3) ◽  
pp. 21-24
Author(s):  
Anandika Suryavanshi ◽  
Anand Murari Saxena

The present study was carried out for the determination of bioactive compounds from different extracts of Terminalia catappa and Rumex vesicarius. The plants are mines of several bioactive compounds also called as phytochemical compounds. These bioactive compounds are responsible for imparting such a potential medicinal property in the plants. The medicinal plant contains various types of bioactive compounds including phenols, alkaloids, terpenoids, tannins, glycosides, flavonoids etc. These bioactive compounds take part in various metabolic pathways and impart their effect. Terminalia catappa and Rumex vesicarius are such medicinal plants which are being used for medicinal purposes for long time. Both of them are rich source of potential bioactive compounds and hence carry out several biological activities effective for the treatment of various diseases. Hence the study focuses on determining the types of bioactive compounds they acquire. For this the leaves of T. catappa and dry stems of R. vesicarius were used for the extraction using different solvents with soxhlet method. The extract of different solvents was analyzed for the phytochemical test. The results obtained revealed that the type of solvents is crucial in determining the type of bioactive compounds to be present in extract. The results showed that ethanol and methanol are good solvent choice for extraction for these two plants. The results concludes that the presence of such potential and effective bioactive compounds in their extract makes them important medicinal plants and are hence employed for several researches and also used for treatment of various kinds of diseases.


Author(s):  
Gehan Fawzy Abdel Raoof ◽  
Ahmed Wael Lethy Mohamed

Parasitic disease is one of the most important challenges impacting a large number of people. Worldwide, more than three billion cases of parasitic disease are reported yearly. Due to the resistance of parasite to the synthetic drugs, it is necessary to search for alternative sources. Plants contain different phytoconstituents with different biological activities.  Many previous researches showed that many plants exerted antiparasitic activity due to its secondary metabolites. This review highlights the antiparasitic effects of different medicinal plants and mentions the mode of action of different phytochemicals against parasites. In conclusion, the medicinal plants play a vital role as antiparasitic agents, but further studies are needed to isolate and test the active constituents of the medicinal plants as antiparasitic agents targeting to enter the drug discoveryarea.  Peer Review History: Received 20 July 2020; Revised 11 August; Accepted 26 August, Available online 15 September 2020 UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency. Received file Average Peer review marks at initial stage: 5.5/10 Average Peer review marks at publication stage: 7.0/10 Reviewer(s) detail: Name: Marwa  A. A. Fayed Affiliation: Faculty of Pharmacy, University of Sadat City, Egypt E-mail: [email protected]   Name: Dr. Mahmut Yıldıztekin Affiliation: Muğla Sıtkı Koçman University, Turkey E-mail: [email protected]   Comments of reviewer(s): Similar Articles: A STUDY ON DIFFERENT PLANTS OF APOCYNACEAE FAMILY AND THEIR MEDICINAL USES A REVIEW ON MEDICINAL USES OF DIFFERENT PLANTS OF EUPHORBIACEAE FAMILY


2021 ◽  
Vol 50 (9) ◽  
pp. 2625-2640
Author(s):  
Nooraqilah Che Rozenan ◽  
Nor Hisam Zamakshshari ◽  
Kok Hoong Leong ◽  
Najihah Mohd Hashim ◽  
Khadher Ahmad ◽  
...  

This study was performed to establish anti-diabetic and anti-oxidant properties, and to carry out phytochemical analysis of selected local plants which are traditionally used as medicinal plants. Local plants involved in this study were Lawsonia inermis, Punica granatum, Dryobalanops aromatica, Ziziphus mauritiana, and Ocimum basilicum. Solvent extraction was performed using maceration method with solvents of increasing polarity. Alpha-glucosidase inhibition assay was performed on all extracts to ascertain their anti-diabetic potentials. The extracts were screened for antioxidant activity using anti-oxidant assays (FRAP, DPPH, TAOC, ABTS, and BCB) and quantitative phytochemical analyses (TPC and TFC). Chemical profiling using LCMS and GCMS was performed on extracts with high biological activities. Methanol extracts of D. aromatica bark and leaves showed the most potent inhibition of alpha-glucosidase with IC50 values of 0.63 ± 0.03 µg/mL and 0.98 ± 0.02 µg/mL, respectively. Both extracts exhibited similar anti-oxidant activity on all five assays and possessed high phenolic contents with values of 266.79 and 261.69 GAE, respectively. The results obtained suggested that amongst the selected plants studied, D. aromatica showed high anti-oxidant activity and anti-diabetic activity (via inhibition of alpha-glucosidase). This is the first report that highlights the anti-diabetic potential of D. aromatica.


Author(s):  
Pavani C H

Hyperlipidemia is the immediate results of the excessive fat intake in food. This results in the elevated levels of cholesterol and triglycerides in the blood. This leads to heart conditions like CAD, hypertension, congestive heart failure as risk factors which can be lethal. There are many drugs to treat and control the lipids levels in the body. These drugs are either designed to prevent LDL accumulation and VLDL synthesis. Some drugs also lower the elevated levels of saturated lipids in the body. But many drugs are known to cause side effects and adverse effects; therefore, alternatives to the drugs are the subjects for current investigations. Herbs and medicinal plants are used as treatment sources for many years. They have been used in the Indian medical systems like Ayurveda, Siddha etc. As the application of herbs in the treatment is growing, there is an urgent need for the establishment of Pharmacological reasoning and standardization of the activity of the medicinal plants. Chloris paraguaiensis Steud. is Poyaceae member that is called locally as Uppugaddi. Traditionally it is used to treat Rheumatism, Diabetes, fever and diarrhoea. The chemical constituents are known to have anti-oxidant properties and most of the anti-oxidants have anti-hyperlipidemic activity too. Since the plant has abundant flavonoid and phenol content, the current research focusses on the investigation of the anti-hyperlipidemic activity of the plant Chloris extracts. Extracts of Chloris at 200mg/kg showed a comparably similar anti hyperlipidemia activity to that of the standard drug. The extracts showed a dose based increase in the activity at 100 and 200mg/kg body weight.


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


2020 ◽  
Vol 17 (8) ◽  
pp. 594-609
Author(s):  
Preetismita Borah ◽  
Vhatkar Dattatraya Shivling ◽  
Bimal Krishna Banik ◽  
Biswa Mohan Sahoo

In recent years, hybrid systems are gaining considerable attention owing to their various biological applications in drug development. Generally, hybrid molecules are constructed from different molecular entities to generate a new functional molecule with improved biological activities. There already exist a large number of naturally occurring hybrid molecules based on both non-steroid and steroid frameworks synthesized by nature through mixed biosynthetic pathways such as, a) integration of the different biosynthetic pathways or b) Carbon- Carbon bond formation between different components derived through different biosynthetic pathways. Multicomponent reactions are a great way to generate efficient libraries of hybrid compounds with high diversity. Throughout the scientific history, the most common factors developing technologies are less energy consumption and avoiding the use of hazardous reagents. In this case, microwave energy plays a vital role in chemical transformations since it involves two very essential criteria of synthesis, minimizing energy consumption required for heating and time required for the reaction. This review summarizes the use of microwave energy in the synthesis of steroidal and non-steroidal hybrid molecules and the use of multicomponent reactions.


2016 ◽  
Vol 5 (06) ◽  
pp. 4589 ◽  
Author(s):  
Vardan Singh Rawat

The present study was conducted in the Thalisain block of Pauri Garhwal to document the medicinal plants used by the local communities. 53 plant species distributed in 38 families were documented. Of the total plant species 49% were herbs, 26% trees, 23% shrubs and 2% climbers. 16 different plant parts were used by local communities for different ailments. Medicinal plants were widely used by major sections of the community against common colds, cough, skin diseases, snake bite, fever, joint pains, bronchitis etc. Women and local healers called vaids have a vital role in environmental management due to traditional knowledge and use of plants as medicine with undocumented knowledge. It has been observed as one of the best option of sustainable livelihoods for the residents of the area.


Sign in / Sign up

Export Citation Format

Share Document