scholarly journals Brain is an endocrine organ through secretion and nuclear transfer of parathymosin

2020 ◽  
Vol 3 (12) ◽  
pp. e202000917
Author(s):  
Bin Yu ◽  
Yizhe Tang ◽  
Dongsheng Cai

This study reports that parathymosin (PTMS) is secreted by hypothalamic stem/progenitor cells (htNSC) to inhibit senescence of recipient cells such as fibroblasts. Upon release, PTMS is rapidly transferred into the nuclei of various cell types, including neuronal GT1-7 cells and different peripheral cells, and it is effectively transferred into neuronal nuclei in various brain regions in vivo. Notably, brain neurons also produce and release PTMS, and because neuronal populations are large, they are important for maintaining PTMS in the cerebrospinal fluid which is further transferable into the blood. Compared with several other brain regions, the hypothalamus is stronger for long-distance PTMS transfer, supporting a key hypothalamic role in this function. In physiology, aging is associated with declines in PTMS production and transfer in the brain, and ptms knockdown in the hypothalamus versus hippocampus were studied showing different contributions to neurobehavioral physiology. In conclusion, the brain is an endocrine organ through secretion and nuclear transfer of PTMS, and the hypothalamus–brain orchestration of this function is protective in physiology and counteractive against aging-related disorders.

2021 ◽  
Vol 15 ◽  
Author(s):  
Louis-Philippe Bernier ◽  
Clément Brunner ◽  
Azzurra Cottarelli ◽  
Matilde Balbi

The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.


2013 ◽  
pp. 438-445
Author(s):  
Nobuyuki Okamura ◽  
Shozo Furumoto ◽  
Manabu Tashiro ◽  
Katsutoshi Furukawa ◽  
Hiroyuki Arai ◽  
...  

Alzheimer’s disease (AD) and many other neurodegenerative disorders belong to the family of protein misfolding diseases. These diseases are characterized by the deposition of insoluble protein aggregates containing an enriched ß-sheet structure. To evaluate PET amyloid-imaging tracer [11C]BF-227 as an agent for in vivo detection of various kinds of misfolded protein, a [11C]BF-227 PET study was performed in patients with various protein misfolding diseases, including AD, frontotemporal dementia (FTD), dementia with Lewy bodies (DLB), sporadic Creutzfeldt-Jakob disease (sCJD) and Gerstmann-Sträussler-Scheinker disease (GSS). BF-227 binds to ß-amyloid fibrils with high affinity. Most of the AD patients showed prominent retention of [11C]BF-227 in the neocortex. In addition, neocortical retention of BF-227 was observed in the subjects with mild cognitive impairment who converted to AD during follow-up. DLB patients had elevated [11C]BF-227 uptake in the neocortex. However, FTD and sCJD patients showed no cortical retention of [11C]BF-227. Patients with multiple system atrophy had elevated BF-227 binding in the putamen. Finally, GSS patients had elevated BF-227 uptake in the cerebellum and other brain regions. This chapter confirms that BF-227 can selectively bind to a-synuclein and prion protein deposits using postmortem brain samples. Based on these findings, [11C]BF-227 is not necessarily specific for ß-amyloid in AD patients. However, this tracer could be used to detect various types of protein aggregates in the brain.


The Neuron ◽  
2015 ◽  
pp. 23-38
Author(s):  
Irwin B. Levitan ◽  
Leonard K. Kaczmarek

This chapter examines unique mechanisms that the neuron has evolved to establish and maintain the form required for its specialized signaling functions. Unlike some other organs, the brain contains a variety of cell types including several classes of glial cells, which play a critical role in the formation of the myelin sheath around axons and may be involved in immune responses, synaptic transmission, and long-distance calcium signaling in the brain. Neurons share many features in common with other cells (including glia), but they are distinguished by their highly asymmetrical shapes. The neuronal cytoskeleton is essential for establishing this cell shape during development and for maintaining it in adulthood. The process of axonal transport moves vesicles and other organelles to regions remote from the neuronal cell body. Proteins such as kinesin and dynein, called molecular motors, make use of the energy released by hydrolysis of ATP to drive axonal transport.


Brain ◽  
2020 ◽  
Vol 143 (5) ◽  
pp. 1476-1497 ◽  
Author(s):  
Min Guo ◽  
Jian Wang ◽  
Yanxin Zhao ◽  
Yiwei Feng ◽  
Sida Han ◽  
...  

Abstract Accumulation of neuronal α-synuclein is a prominent feature in Parkinson’s disease. More recently, such abnormal protein aggregation has been reported to spread from cell to cell and exosomes are considered as important mediators. The focus of such research, however, has been primarily in neurons. Given the increasing recognition of the importance of non-cell autonomous-mediated neurotoxicity, it is critical to investigate the contribution of glia to α-synuclein aggregation and spread. Microglia are the primary phagocytes in the brain and have been well-documented as inducers of neuroinflammation. How and to what extent microglia and their exosomes impact α-synuclein pathology has not been well delineated. We report here that when treated with human α-synuclein preformed fibrils, exosomes containing α-synuclein released by microglia are fully capable of inducing protein aggregation in the recipient neurons. Additionally, when combined with microglial proinflammatory cytokines, these exosomes further increased protein aggregation in neurons. Inhibition of exosome synthesis in microglia reduced α-synuclein transmission. The in vivo significance of these exosomes was demonstrated by stereotaxic injection of exosomes isolated from α-synuclein preformed fibrils treated microglia into the mouse striatum. Phosphorylated α-synuclein was observed in multiple brain regions consistent with their neuronal connectivity. These animals also exhibited neurodegeneration in the nigrostriatal pathway in a time-dependent manner. Depleting microglia in vivo dramatically suppressed the transmission of α-synuclein after stereotaxic injection of preformed fibrils. Mechanistically, we report here that α-synuclein preformed fibrils impaired autophagy flux by upregulating PELI1, which in turn, resulted in degradation of LAMP2 in activated microglia. More importantly, by purifying microglia/macrophage derived exosomes in the CSF of Parkinson’s disease patients, we confirmed the presence of α-synuclein oligomer in CD11b+ exosomes, which were able to induce α-synuclein aggregation in neurons, further supporting the translational aspect of this study. Taken together, our study supports the view that microglial exosomes contribute to the progression of α-synuclein pathology and therefore, they may serve as a promising therapeutic target for Parkinson’s disease.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4496 ◽  
Author(s):  
Inbar Schlachet ◽  
Hen Moshe Halamish ◽  
Alejandro Sosnik

Intranasal (i.n.) administration became an alternative strategy to bypass the blood–brain barrier and improve drug bioavailability in the brain. The main goal of this work was to preliminarily study the biodistribution of mixed amphiphilic mucoadhesive nanoparticles made of chitosan-g-poly(methyl methacrylate) and poly(vinyl alcohol)-g-poly(methyl methacrylate) and ionotropically crosslinked with sodium tripolyphosphate in the brain after intravenous (i.v.) and i.n. administration to Hsd:ICR mice. After i.v. administration, the highest nanoparticle accumulation was detected in the liver, among other peripheral organs. After i.n. administration of a 10-times smaller nanoparticle dose, the accumulation of the nanoparticles in off-target organs was much lower than after i.v. injection. In particular, the accumulation of the nanoparticles in the liver was 20 times lower than by i.v. When brains were analyzed separately, intravenously administered nanoparticles accumulated mainly in the “top” brain, reaching a maximum after 1 h. Conversely, in i.n. administration, nanoparticles were detected in the “bottom” brain and the head (maximum reached after 2 h) owing to their retention in the nasal mucosa and could serve as a reservoir from which the drug is released and transported to the brain over time. Overall, results indicate that i.n. nanoparticles reach similar brain bioavailability, though with a 10-fold smaller dose, and accumulate in off-target organs to a more limited extent and only after redistribution through the systemic circulation. At the same time, both administration routes seem to lead to differential accumulation in brain regions, and thus, they could be beneficial in the treatment of different medical conditions.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1208 ◽  
Author(s):  
Michael J. Garabedian ◽  
Charles A. Harris ◽  
Freddy Jeanneteau

Glucocorticoids via the glucocorticoid receptor (GR) have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using in vitro and cell culture–based approaches, how GR responds to changes in external signals in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.


2003 ◽  
Vol 83 (4) ◽  
pp. 1183-1221 ◽  
Author(s):  
MITCHELL CHESLER

Chesler, Mitchell. Regulation and Modulation of pH in the Brain. Physiol Rev 83: 1183-1221, 2003; 10.1152/physrev.00010.2003.—The regulation of pH is a vital homeostatic function shared by all tissues. Mechanisms that govern H+ in the intracellular and extracellular fluid are especially important in the brain, because electrical activity can elicit rapid pH changes in both compartments. These acid-base transients may in turn influence neural activity by affecting a variety of ion channels. The mechanisms responsible for the regulation of intracellular pH in brain are similar to those of other tissues and are comprised principally of forms of Na+/H+ exchange, Na+-driven Cl-/HCO3- exchange, Na+-HCO3- cotransport, and passive Cl-/HCO3- exchange. Differences in the expression or efficacy of these mechanisms have been noted among the functionally and morphologically diverse neurons and glial cells that have been studied. Molecular identification of transporter isoforms has revealed heterogeneity among brain regions and cell types. Neural activity gives rise to an assortment of extracellular and intracellular pH shifts that originate from a variety of mechanisms. Intracellular pH shifts in neurons and glia have been linked to Ca2+ transport, activation of acid extrusion systems, and the accumulation of metabolic products. Extracellular pH shifts can occur within milliseconds of neural activity, arise from an assortment of mechanisms, and are governed by the activity of extracellular carbonic anhydrase. The functional significance of these compartmental, activity-dependent pH shifts is discussed.


1989 ◽  
Vol 76 (4) ◽  
pp. 397-402 ◽  
Author(s):  
A. J. Wood ◽  
A. Viswalingam ◽  
P. Glue ◽  
J. K. Aronson ◽  
D. G. Grahame-Smith

1. We have measured cation transport in vivo in seven healthy volunteers under control conditions and after they had taken lithium carbonate for 21 days in doses which maintained the serum lithium concentration in the range 0.6–0.8 mmol/l. 2. We have measured cation transport in vivo after the administration of an oral load of rubidium chloride, and have found that, although intra-erythrocytic concentrations of rubidium were significantly lower 1 h after the administration of rubidium when the subjects were taking lithium, there was a significant increase in the rate of uptake of rubidium into the erythrocytes over the subsequent period of the test, suggesting a direct stimulation of sodium, potassium-activated adenosine triphosphatase by lithium. 3. Lithium administration did not affect the plasma concentration versus time profile of rubidium after the rubidium load, implying that the lithium-stimulated uptake of rubidium which occurs in erythrocytes does not necessarily occur in other cell types. 4. These results suggest that previous studies of cation transport using peripheral cells and assay systems in vitro do not necessarily reflect changes in cation transport in vivo in excitable tissues.


2016 ◽  
Vol 27 (2) ◽  
pp. 78
Author(s):  
Simon Gelman

Optogenetics is a novel technology with the widely acknowledged potential to revolutionize cell biology and neuroscience. Essentially, optogenetic methods integrate optical and genetic tools to control the activity of whole cells or subcellular events. In recent years, optogenetics has been used to activate and to inhibit genetically defined neuronal populations within neural circuits. As such, it has been used to show the sufficiency or the necessity of specific neuronal cell types in generating behaviors across a number of animal species. When employed in rodent models of human neurological and psychiatric disorders, optogenetics has provided clinically relevant insights into the function of pathologic neural circuits. Recent progress in the in vivo applications of this methodology is reviewed in this article, with particular focus on behavioral applications in nematodes, fish, rodents, and nonhuman primates.


Sign in / Sign up

Export Citation Format

Share Document