scholarly journals QUALITATIVE AND QUANTITATIVE ANALYSIS OF PHYTOCHEMICALS AND IN VITRO ANTIOXIDANT ASSAYS IN THE TUBER OF SOLENA AMPLEXICAULIS (LAM.) GANDHI. (CUCURBITACEAE)

2017 ◽  
Vol 4 (2) ◽  
pp. 24-31
Author(s):  
Karthika K ◽  
Jamuna S ◽  
Paulsamy S

Most of the traditional medicinal plants in India are not scientifically validated. Scientific evaluation of medicinal property along with traditional knowledge is essential to obtain effective drugs for commercial purpose. Solena amplexicaulisbelongs to the family, Cucurbitaceae, a traditional medicinal plant species ofTamil Nadu, India is being prescribed to cure various diseases. In this study, the objective was to investigate the qualitative and quantitative determinations of certain phytochemicals and in vitro antioxidant capabilities of various alcoholic and aqueous tuber extracts of S. amplexicaulisby adapting standard procedures. In all the assays methanolic tuber extract registered significantly high amount of secondary metabolites and also it effectively scavenge the free radicals in a concentration dependent manner than the other extracts. These results were compared with synthetic (BHA and BHT) as well as natural antioxidants (rutin and quercetin). The outcome of the study revealed most valuable information and also supports the continued sustainable use of this species in traditional systems of medicine.

Author(s):  
Nestor Gipwe Feussom ◽  
Hermine Boukeng Jatsa ◽  
Mérimé Christian Kenfack ◽  
Emilienne Tienga Nkondo ◽  
Ulrich Membe Femoe ◽  
...  

Aims: Continuous attempts are being made to develop new and more effective drugs for the treatment of schistosomiasis. Ozoroa pulcherrima Schweinf. is a medicinal plant used in Africa for the treatment of dysmenorrhea, lower abdominal pain, dystocia and intestinal helminthiasis. This study provides findings on the cercaricidal and schistosomicidal activity of extracts and fractions of Ozoroa pulcherrima in in vitro assays. Methodology: The aqueous and methanolic extracts from Ozoroa pulcherrima root parts (62.5 – 2000 µg/mL), as well as the methanol derived fractions (n-hexane and ethyl acetate: 31.25 – 1000 µg/mL) were tested on cercariae and adult worms of Schistosoma mansoni. Niclosamide-olamine 5% (1 µg/mL) and praziquantel (10 µg/mL) were respectively used as reference drugs. During the assays, the mortality of cercariae after 2 hours, and adult worms’ mobility and mortality after 48 hours of incubation were evaluated. Results: Ozoroa pulcherrima extracts and fractions significantly increased cercariae and worm mortality in a concentration-dependent manner. The methanolic extract was the most active on cercariae with a LC50of 20.65 µg/mL after 30 minutes, while the n-hexane fraction was the most active on worm with a LC50 of 79.54 μg/mL (65.58 – 96.47 μg/mL) after 48 hours. Significant reduction of motor activity (18.47 to 100%) was recorded for surviving worms incubated in different concentrations of the extracts and fractions. Conclusion: This study proves that Ozoroa pulcherrima extracts and fractions have cercaricidal and schistosomicidal activities. Ozoroa pulcherrima may have great potential as an anti-schistosomal agent for further research.


2012 ◽  
Vol 32 (3) ◽  
pp. 153-163 ◽  
Author(s):  
Ratnesh Kumar Sharma ◽  
Bechan Sharma

Various efforts have been made in past in order to predict the underlying mechanism of pesticide-induced toxicity usingin vitroand animal models, however, these predictions may or may not be directly correlated with humans. The present study was designed to investigate the carbofuran induced genotoxicity and its amelioration by vitamins C and E by treating human peripheral blood lymphocytes (PBLs) with different concentrations (0, 0.5, 1.25, 2.5, 3.75 and 5.0 μM) of this compound. The treatment of PBLs with carbofuran displayed significant DNA damage in concentration dependent manner. The carbofuran induced genotoxicity could be ameliorated to considerable extent by pretreatment of PBLs with equimolar (10 μM) concentration of each of the vitamins C and E; the magnitude of protection by vitamin E being higher than by vitamin C. Also, it was found that the level of protection by these vitamins was higher when PBLs were treated with lower concentrations of pesticide. The significant DNA damage as observed by H2O2, a positive control in the present study, and its amelioration by natural antioxidants (vitamins C and E) lend an evidence to suggest that carbofuran would have caused genotoxicity via pesticide induced oxidative stress.


2018 ◽  
Vol 11 (3) ◽  
pp. 1239-1245 ◽  
Author(s):  
Bahaa Al-Trad ◽  
Mahmoud A Al –Qudah ◽  
Mazhar Al Zoubi ◽  
Alaa Al-Masri ◽  
Riyadh Muhaidat ◽  
...  

Previous studies indicated that the extracts from different Ephedra species have antibacterial, antifungal and antioxidant activities. However, none of the published report described the phytochemical components and the antioxidant capacities of Ephedra alte belonging to the family Ephedraceae. To evaluate the in-vitro and in-vivo antioxidant activities of the butanolic extract from stems of Ephedra alte from northern Jordan. Graded concentrations of butanolic extracts from stems of E. alte plant were subjected to four different in-vitro antioxidant assays (DPPH, ABTS, ferrous ion chelating and hydroxyl radical scavenging activities). The in-vivo effects of two different doses of the extract (200 mg/kg and 500 mg/kg, orally for 12 days) on the activities of serum and liver superoxide dismutase (SOD) and catalase (CAT) were measured in mice. Strong in-vitro antioxidant activities in a concentration-dependent manner were recorded. As well, significant increases in both liver and serum CAT enzyme activity and in serum SOD activity were observed in mice treated for 12 days with the extract. These results suggested that the butanolic extract from stems of exhibited significant in-vitro and in-vivo antioxidant activities, supporting the use of E. alte as an important source of natural antioxidants.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3886
Author(s):  
Stefania Sut ◽  
Irene Ferrarese ◽  
Maria Giovanna Lupo ◽  
Nicola De Zordi ◽  
Elisa Tripicchio ◽  
...  

In the present study the ability of supercritical carbon dioxide (SCO2) extracts of M. longifolia L. leaves to modulate low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression was evaluated in cultured human hepatoma cell lines Huh7 and HepG2. Two SCO2 extracts, one oil (ML-SCO2) and a semisolid (MW-SCO2), were subjected to detailed chemical characterization by mono- and bidimensional nuclear magnetic resonance (1D, 2D-NMR), gas chromatography coupled with mass spectrometry (GC-MS) and liquid chromatography coupled with mass spectrometry (LC-MS). Chemical analysis revealed significant amounts of fatty acids, phytosterols and terpenoids. ML-SCO2 was able to induce LDLR expression at a dose of 60 µg/mL in HuH7 and HepG2 cell lines. Furthermore, ML-SCO2 reduced PCSK9 secretion in a concentration-dependent manner in both cell lines. Piperitone oxide, the most abundant compound of the volatile constituent of ML-SCO2 (27% w/w), was isolated and tested for the same targets, showing a very effective reduction of PCSK9 expression. The overall results revealed the opportunity to obtain a new nutraceutical ingredient with a high amount of phytosterols and terpenoids using the SCO2 extraction of M. longifolia L., a very well-known botanical species used as food. Furthermore, for the first time we report the high activity of piperitone oxide in the reduction of PCSK9 expression.


2021 ◽  
Vol 14 (3) ◽  
pp. 220
Author(s):  
Claudia Taborda Gómez ◽  
Fabiana Lairion ◽  
Marisa Repetto ◽  
Miren Ettcheto ◽  
Amalia Merelli ◽  
...  

Cannabidiol (CBD), a lipophilic cannabinoid compound without psychoactive effects, has emerged as adjuvant of anti-epileptic drugs (AEDs) in the treatment of refractory epilepsy (RE), decreasing the severity and/or frequency of seizures. CBD is considered a multitarget drug that could act throughout the canonical endocannabinoid receptors (CB1-CB2) or multiple non-canonical pathways. Despite the fact that the CBD mechanism in RE is still unknown, experiments carried out in our laboratory showed that CBD has an inhibitory role on P-glycoprotein excretory function, highly related to RE. Since CB2 is expressed mainly in the immune cells, we hypothesized that CBD treatment could alter the activity of polymorphonuclear neutrophils (PMNs) in a similar way that it does with microglia/macrophages and others circulating leukocytes. In vitro, CBD induced PMN cytoplasmatic vacuolization and proapoptotic nuclear condensation, associated with a significantly decreased viability in a concentration-dependent manner, while low CBD concentration decreased PMN viability in a time-dependent manner. At a functional level, CBD reduced the chemotaxis and oxygen consumption of PMNs related with superoxide anion production, while the singlet oxygen level was increased suggesting oxidative stress damage. These results are in line with the well-known CBD anti-inflammatory effect and support a potential immunosuppressor role on PMNs that could promote an eventual defenseless state during chronic treatment with CBD in RE.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Sign in / Sign up

Export Citation Format

Share Document