scholarly journals Peculiarities of annual internal distribution of small rivers’ runoff (on example of the Udy river)

Formulation of the problem. Water is the basis of life and, therefore, the questions regarding the definition of annual runoff distribution as a whole in Kharkiv region and in the context of individual river basins remain actual. The study of the domestic annual runoff is due to the fact that the Udy River basin belongs to the poorly watered areas, and in recent years climate change leads to a decrease in drainage during the year, including seasonal runoff changes, which may cause water supply problems in the economic sphere. The purpose of the article is to study modern features of the annual distribution of the water runoff of the Udy River basin. Presenting main material. The article deals with the peculiarities of the formation and changes in the annual flow of the river Udy basin for 35 years (1991-2015). Having analyzed the average monthly water consumption in the Udy basin, it can be noted that the annual distribution of drainage for this period is close to all rivers - typical spring flood (March), summer (August, September) and winter (December, January) months. However, the share of spring water in the Udy basin in the annual volume of drainage has decreased and the supply of rivers has changed. In connection with climatic changes, namely, the decrease in winter rainfall, there was an increase in the share of underground supply which contributed to its alignment with the share of snow intra-annual distribution. Conclusions. Having studied annual distribution of the river basin’s flow in the Udy River, it has been found that the share of spring water in the annual volume of drainage decreased from 42-36 to 36-25 %. In recent years, there has been less precipitation in winter and, therefore, snow supply is not prevailing, and there is an increase in the share of underground supply.

Author(s):  

The article is devoted to present-day specific features of the Don River basin rivers spring tide. On the basis of the recent data on the rivers’ water regime changes of maximal water flow, duration of high water period, high water runoff fractions in the annual runoff and hydrograph forms have been shown. It has been demonstrated that the spring tide character change is closely linked with the other phases of rivers’ water regime change.


Formulation of the problem. A national climate program, complying with the Association Agreement between Ukraine and the EU, is aimed at long-term adaptation measures to climate change, providing for the development of legislation in the field of environmental protection, sectoral strategies, improving air and water quality. These measures require identification of climatic factors’ impact on hydrological characteristics of water bodies in any area in order to protect and improve them, as well as a comprehensive approach to the rational management of water resources. Analysis of previous research. Using mathematical models of atmospheric circulation allows us to obtain generalized calculations of the average global and regional air temperature, characterized by significant errors in case of different models. Problems of further research. Modern changes in climatic conditions in Ukraine are characterized by locality and rapidity: increasing number of anomalous atmospheric phenomena, frequency of droughts, dry winds which, according to preliminary estimates, may lead to reduction of water resources, changes in internal annual redistribution of water temperature and runoff against the background of increasing thermal resources of the territory. The purpose. The article analyses climatic indicators’ influence on the main hydrological characteristics on the example of the Psyol river basin within Ukraine. Research methods. Research methods are presented by statistical and cartographic analysis (correlation analysis method). The initial information is the results of observations contained in the State Climate Cadastre and the State Water Cadastre for the Dnieper Valley. Presentation of the main research material. Analysis of climate change in the Psyol river basin indicates a decrease in water consumption, both in the main river of the basin and in its main tributaries. In addition to changes in temperature and humidity, the reasons for this process were the shifts that occurred in the nature of the intra-annual distribution of the runoff. During the late XX – early XXI century the share of spring floods decreased due to the reduced period of ice phenomena and corresponding decrease in the thickness of the snow cover on the rivers. As a result, the most important component of the annual runoff of rivers began to decrease rapidly. The role of groundwater in the formation of water runoff increased against the background of a predominant decrease in precipitation. This is especially true for medium-size and small rivers, subject to significant anthropogenic pressure: over-regulation of channels, creation of artificial lakes, their shallowing. Practical value. Based on the main provisions of the national environmental policy of Ukraine on the use of water resources and the implementation of European principles of the Water Framework Directive 2000/60 / EC (ERVD) the study of changes in hydrological regime of rivers is of practical importance for sustainable management. Research results. The study of the impact of changes in climatic indicators on hydrological characteristics makes it possible to determine the reference conditions and classes of ecological status of rivers under conditions of anthropogenic pressure against the background of further changes in climatic indicators that will have different trends.


Author(s):  
Yuriy Yushchenko ◽  
Olha Palanychko ◽  
Mykola Pasichnyk ◽  
Oleksandr Zakrevskyi

Research of precipitation, water balance of river basins, and the impact of precipitation on river runoff remain relevant in the context of global and regional climate change. Nowadays, many scientific research all over the world are devoted to the research of the problem of river runoff change under the influence of climatic factors. This kind of research has been developing strongly in Ukraine in recent decades. In particular, they concern the rivers of the Ukrainian Carpathians. The basin of the river Putyla to the line of the village of Putyla has an area of 181 km2. It is located in the south-eastern part of the Carpathian and characterized by a significant influence of warm rains on the formation of water runoff. The average annual runoff is characterized by rather complex patterns of change both in time and space. There are periodic, cyclical and unidirectional changes that occur under the influence of a complex system of factors. Climate is a major factor of the water change. Thus, the research of the average runoff of the Putila River has different aspects.To determine the effect of precipitation on river runoff, the method of comparing difference-integral curves of annual runoff and precipitation, as well as water-balance methods are used. Long-term changes and intra-annual distribution of precipitation, in particular rainfall, according to the observations of the meteorological station Selyatyn were analyzed. We constructed a differential integrated curve of modular coefficients of the average annual precipitation in the Putil district. It clearly reflects the cyclical changes in precipitation. Long-term changes and intra-annual distribution of water runoff in the Putyla River also were analyzed. During the observation period, periods of long-term fluctuations of the average annual precipitation were revealed. The average annual rainfall is 842.9 mm. The annual course is stable, ie the greatest amount of precipitation falls in the summer, when there are intense thunderstorms and showers, the least – in winter. Based on the data of hydrological observations, the average long-term value of water consumption according to GP Putila is 2.47 m3/s. We calculated the coefficient of variability (variation). The coefficient of variation for average costs is 0.21 (21%), and for precipitation – 0.7 (7%). The connection between precipitation and runoff was established. We have built a comprehensive schedule of annual distribution of precipitation and costs of the Putyla River for 2010. You can see that in the spring due to snowmelt there is an influx of water and there is a spring flood. It is known that 2010 in Putilsky district was full of water. The reduction of water consumption in the Putyla River in the cold period of the year with a decrease in precipitation is also observed. Graph of the dependence of the runoff of the Putyla River on precipitation in the village of Selyatyn showed a fairly clear relationship between the variable values of runoff and precipitation (the coefficient of variation is 0,66). The feeding structure of the Putyla River is mixed. The main share is occupied by rain, less - snow and groundwater. Key words: climate change, precipitation, runoff, rivers, long-term changes in runoff, intra-annual distribution of precipitation and runoff, Putyla river.


Author(s):  
Liudmyla Kosteniuk

This publication analyzes the features of the hydrological regime and channel processes of the Iltsya River, based on regular observations and during the expedition trip in June 2019.The schemes of basin distribution and geomorphological zoning of the studied object, curves of connection of water consumption and levels Q = f (H), graphs of the course of maximum, average and minimum water levels, and also cross sections on key sites are presented in the work. Conditions of channel formation of natural watercourses are a complex and multilateral process which is closely connected with natural features of the territory of their basin.The main factors of the natural channel process are the geological structure of the area, sediment flow and grain size. These factors are key, however, the processes of channel formation are also influenced by additional factors that are temporary or local in nature. At the same time, we should not forget about the influence of the anthropogenic factor, the results of which for the basins of small rivers can sometimes even dominate for some time over the main ones mentioned above. All these factors not only affect the channel process, but also difficult to interact with each other. The geological structure, including the lithology of rocks, as well as the relief of the territory, have a direct impact on the shape of the valley, the longitudinal profile, the composition of channel-forming sediments, and hence the stability of the channel. Water runoff is the main active factor that depends on the hydrological regime of the river and determines its water content and size. The nature of the sediments and their regime is a factor that determines the rate and direction of vertical and horizontal deformations of the channel. The object of our study - is the river Iltsya, a small left tributary of the ChornyyCheremosh, which is characterized by specific geological conditions, and therefore significantly different from other small rivers in the region, including neighboring tributaries of the main river (ChornyyCheremosh). The second feature of the studied river is that the lower part of its basin is located within the Vorokhta-Putilsky ancient terraced lowlands, while the sources are formed within the Pokutsko-Bukovynian Carpathians, which in turn determines a certain specificity in the formation of its channel. This geological and geomorphological feature of the Iltsya river basin distinguishes it among numerous similar small rivers of this region of the Ukrainian Carpathians. Summarizing all the above, we have made some conclusions, the basin of the river Iltsya is currently little studied, both in terms of hydrological regime, channel processes and geomorphological studies, although in fact it is quite interesting and not typical of project, which raises many questions that require more detailed study. The presence of a long series of observations, allows us to identify general tendencies to the gradual incision of the channel in the area of the hydropost, although with little intensity. Visual inspection showed more manifestations of horizontal transformations associated with the movement of alluvial ridges and erosion of the shores. The greatest feature of the Iltsya river basin is the polymorphic formation of its channel system, because within the Vorokhta-Putil lowlands the river Iltsya and VelykyiRosysh occupy a wide valley of the ancient pliocene river, and this nuance has the greatest influence on the nature of riverbeds within its limits.


Author(s):  

The Lake Baikal history and the main problems of its regulation have been discussed. Analysis of the lake level alterations over the whole period of instrumental observations (1900–2016) has been carried out. A protracted low-water period was observed in the Baikal basin fromthe middle 90s of XX century. It was the longest for the whole period of instrumental observations. The extreme low-water situation in the lake basin in 2014–2015 has been studied. A statistically significant trend of the temperature increase and precipitations decrease has been stated. Atmospheric precipitations affect the river runoff many-year fluctuations more than other water balance elements. It was stated that the Lake Baikal level directly depends on the Selenga River water content. Minimal runoff during the low-water periods demonstrates a tendency to decrease, just like the annual runoff. It was a perpetual series of the reduced runoff that caused the minimal runoff negative trend, as a result of which the water resources inflow to the Lake Baikal was recordbreaking minimal over the previous years. The Selenga River basin runoff parameters spatial-temporal reconstruction was performed according the hydrometric posts and dendro/climatic stations data. The water runoff reconstruction statistic models show a good agreement between the Archangel fir ring amount of growth and annual water flow. The historic chronicles and moisture regimes have been chronologically compared on the basis of the obtained water regime reconstructions. The historic chronicles analysis is an indirect verification of the obtained time series related to the water flows in the Selenga River basin.


Author(s):  
B. Korzhenevsky ◽  
Gleb Tolkachev ◽  
Nikolay Kolomiycev

The problems of modern geological ecology associated with the study of pollution of sediments of water bodies by heavy metals are considered. The Volga River basin is quite heterogeneous, both in geomorphological and hydrological terms, and in thechnogenical development and usage. A fourrank taxonomy is presented for the selection of sites for monitoring, based on a combination of natural, landscape, climatic and thechnogenical factors. To the largest – the highest taxon – sites of the Ist category – bowls of reservoirs with the slopes and the urban zones, industrial and agricultural structures located within them are carried. Within these areas are allocated to smaller taxa, areas category IInd are the industrial and urban zones, areas category IIIrd are the small rivers without significant contamination and areas category IVth to conduct special observations. The examples of special observations in the study of the annual migration of heavy metals in the system «bottom sediments – water column» on the Ivankovo reservoir are highlighted. The investigations were carried out under the conditions of the standard flow rate for this reservoir and in the conditions of slow water exchange.


2021 ◽  
Vol 100 (1) ◽  
pp. 17-26
Author(s):  
T. Kazakbayeva ◽  

The data recovery of the annual runoff was carried out and correlation dependences were obtained, which were used to calculate the runoff rate for each of the selected rivers in the Syrdariya river basin. Differential integral curves were constructed from the runoff data using the variability index. When restoring the missing data on the annual runoff, the river-analogue method was applied. The actual series of observations are given for a longterm period. The base period was chosen from 1960 to 2015. Quantitative estimates of the effectiveness of bringing the average values to a multi-year period are also provided.


2018 ◽  
Vol 04 (03) ◽  
pp. 1850013 ◽  
Author(s):  
Bernard O. Barraqué ◽  
Patrick Laigneau ◽  
Rosa Maria Formiga-Johnsson

The Agences de l’eau (Water Agencies) are well known abroad as the French attempt to develop integrated water management at river basin scale through the implementation of the Polluter Pays Principle (PPP). Yet, after 30 years of existence, environmental economists became aware that they were not implementing the PPP, and therefore were not aiming at reducing pollution through economic efficiency. Behind the purported success story, which still attracts visitors from abroad, a crisis has been recently growing. Initially based on the model of the German (rather than Dutch) waterboards, the French system always remained fragile and quasi-unconstitutional. It failed to choose between two legal, economic and institutional conceptions of river basin management. These principles differ on the definition of the PPP, and on the role of levies paid by water users. After presenting these two contrasting visions, the paper revisits the history of the French Agences, to show that, unwilling to modify the Constitution to make room for specific institutions to manage common pool resources, Parliament and administrative elites brought the system to levels of complexity and incoherence which might doom the experiment.


Author(s):  

The article considers main physical and geographical factors affecting the runoff, spring flood of rivers in the Arpa River basin, and analyzes the regularities of their spacetime distribution. The authors have obtained correlation relationship between the values of the flood runoff layer, the mean module maximum runoff and weighted average height of the catchment area of the Arpa River, between the mean annual maximum runoff module for the period floods and catchment areas of rivers. These dependencies can be used for preliminary estimates of the spring flood runoff of unexplored rivers of the territory under consideration. A close correlation between the values of the annual runoff and the runoff of the spring flood in the section of the Arpa River – Dzhermuk has been also revealed. It can be used for forecasting the annual flow.


2022 ◽  
Vol 14 (2) ◽  
pp. 927
Author(s):  
Zhanna Buryak ◽  
Fedor Lisetskii ◽  
Artyom Gusarov ◽  
Anastasiya Narozhnyaya ◽  
Mikhail Kitov

The quantitative and qualitative depletion of water resources (both surface and groundwater) is closely related to the need to protect soils against degradation, rationalization of land use, and regulation of surface water runoff within the watershed area. Belgorod Oblast (27,100 km2), one of the administrative regions of European Russia, was chosen as the study area. It is characterized by a high activity of soil erosion (the share of eroded soils is about 48% of the total area of arable land). The development phase of the River Basin Environmental Management Projects (217 river basins from the fourth to seventh order) allowed for the proceeding of the development of an integrated monitoring system for river systems and river basin systems. The methods used to establish a geoecological network for regional monitoring include the selection and application of GIS techniques to quantify the main indicators of ecological state and predisposition of river basins to soil erosion (the share of cropland and forestland, the share of the south-oriented slopes, soil erodibility, Slope Length and Steepness (LS) factor, erosion index of precipitation, and the river network density) and the method of a hierarchical classification of cluster analysis for the grouping of river basins. An approach considering the typology of river basins is also used to expand the regional network of hydrological gauging stations to rationalize the national hydrological monitoring network. By establishing 16 additional gauging stations on rivers from the fourth to seventh order, this approach allows for an increase in the area of hydro-agroecological monitoring by 1.26 times (i.e., up to 77.5% of the total area of Belgorod Oblast). Some integrated indicators of agroecological (on the watershed surface) and hydroecological (in river water flow) monitoring are proposed to improve basin environmental management projects. Six-year monitoring showed the effectiveness of water quality control measures on an example of a decrease in the concentrations of five major pollutants in river waters.


Sign in / Sign up

Export Citation Format

Share Document