NUMERICAL INVESTIGATION OF WAVY LEADING EDGE EFFECTS ON DRAG AND LIFT COEFFICIENTS OF NACA 0015 AIRFOIL.

Author(s):  
João Victor Salvaro ◽  
Gustavo Luiz Macedo da Silva ◽  
Fernando Almeida Rocha
2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


Author(s):  
Bo Wang ◽  
Yanhui Wu ◽  
Kai Liu

Driven by the need to control flow separations in highly loaded compressors, a numerical investigation is carried out to study the control effect of wavy blades in a linear compressor cascade. Two types of wavy blades are studied with wavy blade-A having a sinusoidal leading edge, while wavy blade-B having pitchwise sinusoidal variation in the stacking line. The influence of wavy blades on the cascade performance is evaluated at incidences from −1° to +9°. For the wavy blade-A with suitable waviness parameters, the cascade diffusion capacity is enhanced accompanied by the loss reduction under high incidence conditions where 2D separation is the dominant flow structure on the suction surface of the unmodified blade. For well-designed wavy blade-B, the improvement of cascade performance is achieved under low incidence conditions where 3D corner separation is the dominant flow structure on the suction surface of the baseline blade. The influence of waviness parameters on the control effect is also discussed by comparing the performance of cascades with different wavy blade configurations. Detailed analysis of the predicted flow field shows that both the wavy blade-A and wavy blade-B have capacity to control flow separation in the cascade but their control mechanism are different. For wavy blade-A, the wavy leading edge results in the formation of counter-rotating streamwise vortices downstream of trough. These streamwise vortices can not only enhance momentum exchange between the outer flow and blade boundary layer, but also act as the suction surface fence to hamper the upwash of low momentum fluid driven by cross flow. For wavy blade-B, the wavy surface on the blade leads to a reduction of the cross flow upwash by influencing the spanwise distribution of the suction surface static pressure and guiding the upwash flow.


Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


Author(s):  
Armando Alexandre ◽  
Raffaello Antonutti ◽  
Theo Gentils ◽  
Laurent Mutricy ◽  
Pierre Weyne

Abstract Floating wind is now entering a commercial-stage, and there are a significant number of commercial projects in countries like France, Japan, UK and Portugal. A floating wind project is complex and has many interdependencies and interfaces. During all stages of the project several participants are expected to use a numerical model of the whole system and not only the part the participant has to design. Examples of this are the mooring and floater designer requiring a coupled model of the whole system including also the wind turbine, the operations team requiring a model of the system to plan towing and operations. All these stakeholders require a coupled model where the hydrodynamics, aerodynamics and structural physics of the system are captured with different levels of accuracy. In this paper, we will concentrate on a simplified model for the aerodynamic loading of the turbine in idling and standstill conditions that can be easily implemented in a simulation tool used for floater, mooring and marine operations studies. The method consists of using a subset of simulations at constant wind speed (ideally close to the wind speed required for the simulations) run on a detailed turbine model on a rigid tower and fixed foundation — normally run by the turbine designer. A proxy to the aerodynamic loads on the rotor and nacelle (RNA) is to take the horizontal yaw bearing loads. The process is then repeated for a range of nacelle yaw misalignments (for example every 15° for 360°). A look-up table with the horizontal yaw bearing load for the range of wind-rotor misalignments investigated is created. The simplified model of the aerodynamic loads on the RNA consists of a fixed blade (or wing) segment located at the hub, where aerodynamic drag and lift coefficients can be specified. Using the look-up tables created using the detailed turbine model, drag and lift coefficients are estimated as a function of the angle between the rotor and the wind direction. This representation of the aerodynamic loading on the RNA was then verified against full-field turbulent wind simulations in fixed and floating conditions using a multi-megawatt commercial turbine. The results for the parameters concerning the floater, mooring and marine operations design were monitored (e.g. tower bottom loads, offsets, pitch, mooring tensions) for extreme conditions and the errors introduced by this simplified rotor are generally lower than 4%. This illustrates that this simplified representation of the turbine can be used by the various parties of the project during the early stages of the design, particularly when knowing the loading within the RNA and on higher sections of the tower is not important.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1731-1734
Author(s):  
Shao Hua Li ◽  
Ge Wu ◽  
Ling Zhang

In order to investigate the influence of cooling efficiency of leading edge of film cooling blade with different turbulence intensity and blowing ratios,which use method of N-S equation,various blowing ratios of 1.0、1.5 and 2.0,various turbulence intensity of 5%、12%、20% and 30%,it simulated temperature field in leading edge of film cooling blade.The results show: cooling efficiency decreased when blowing ratios is increased.When turbulence intensity is 5%、12% and 20%,it obtains maximum cooling efficiency blowing ratios of 1.0.When turbulence intensity is 30%,it obtains maximum cooling efficiency blowing ratios of 1.5. In blowing ratios of 1.0,cooling efficiency decreased when turbulence increased.But in blowing ratios of 1.5 and 2.0,cooling efficiency increased when turbulence increased.


2019 ◽  
Vol 12 (1) ◽  
pp. 99-119
Author(s):  
Khuder N. Abed

The aim of this paper is to control the flow separation above backward-facing step (BFS) airfoil type NACA 0015 by blowing method. The flow field over airfoil has been studied both experimentally and computationally. The study was divided into two parts: a practical study through which NACA 0015 type with a backward -facing step (located at 44.4% c from leading edge) on the upper surface containing blowing holes parallel to the airfoil chord was used. The tests were done over two-dimensional airfoil in an open circuit suction subsonic wind tunnel with flow velocity 25m/s to obtain the pressure distribution coefficients. A numerical study was done by using ANSYS Fluent software version 16.0 on three models of NACA 0015, the first one has backward-facing step without blowing, the second with single blowing holes and the third have multi blowing holes technique. Both studies (experimental and numerical) were done at low Reynolds number (Re=4.4x105) and all models have chord length 0.27m.The experimental investigations and CFD simulations have been performed on the same geometry dimensions, it has been observed that the flow separation on the airfoil can be delayed by using  velocity blowing (30m/s) on the upper surface. The multi blowing holes with velocity improved the aerodynamics properties.The multi blowing holes and single blowing hole thesame effect onpressure distribution coefficients


2022 ◽  
Author(s):  
Lorenzo Beretta ◽  
Myles C. Morelli ◽  
Alberto Guardone ◽  
Giuseppe Quaranta

Sign in / Sign up

Export Citation Format

Share Document