scholarly journals Quantum Confinement of Chiral Charge Carriers in Ring Conductors

2021 ◽  
Author(s):  
◽  
Lei Yang

<p>We theoretically study the quantum confinement effects and transport prop- erties of quantum ring (QR) systems. In particular, we investigate QRs made out of the following materials: single-layer graphene (SLG), single- layer transition-metal dichalcogenides (TMDs) and narrow-gap semiconduc- tor quantum wells (SQWs).  Via perturbation theory and assuming that the ring aspect ratio is small, the general subband dispersion relations of these hard-wall ring confined systems are determined. These dispersion results agree with and extend on previous works. We discover the necessity of including both a size-quantisation energy and an angular momentum dependent energy shift to the dispersion equation due to their sizeable impact on the conductance of the system.  The topological properties of these QR systems is also investigated. We find that QR confinement of materials may destroy the topologically non-trivial properties of states. The topological phase can be recovered when the band structure is inverted and the confined material parameters satisfy certain critical widths and gap limits.  An analytical expression of the conductance for QRs (with symmetrically- arranged leads), in the presence of the perpendicular magnetic field piercing the centre of the ring, is derived. We study the geometric (i.e. Berry) and dynamic phases of the system that arise from the interference of partial waves in the ring branches. We discover that the Berry phase is modified by a correction term that arises purely from the quantum confinement of the materials. This has generally not been taken into account by previous studies. The explicit analytical expressions of the phase correction term are derived and shown to be proportional to the angular momentum dependent energy shift, present in the dispersion relations, for lead injection energies close to the subband energy.  Overall, this study finds that the material-dependent phase plays a significant role in both the dispersion relation and the conductance of QRs and thus provides a useful insight for future experimental efforts with regards to transport in QR systems.</p>

2021 ◽  
Author(s):  
◽  
Lei Yang

<p>We theoretically study the quantum confinement effects and transport prop- erties of quantum ring (QR) systems. In particular, we investigate QRs made out of the following materials: single-layer graphene (SLG), single- layer transition-metal dichalcogenides (TMDs) and narrow-gap semiconduc- tor quantum wells (SQWs).  Via perturbation theory and assuming that the ring aspect ratio is small, the general subband dispersion relations of these hard-wall ring confined systems are determined. These dispersion results agree with and extend on previous works. We discover the necessity of including both a size-quantisation energy and an angular momentum dependent energy shift to the dispersion equation due to their sizeable impact on the conductance of the system.  The topological properties of these QR systems is also investigated. We find that QR confinement of materials may destroy the topologically non-trivial properties of states. The topological phase can be recovered when the band structure is inverted and the confined material parameters satisfy certain critical widths and gap limits.  An analytical expression of the conductance for QRs (with symmetrically- arranged leads), in the presence of the perpendicular magnetic field piercing the centre of the ring, is derived. We study the geometric (i.e. Berry) and dynamic phases of the system that arise from the interference of partial waves in the ring branches. We discover that the Berry phase is modified by a correction term that arises purely from the quantum confinement of the materials. This has generally not been taken into account by previous studies. The explicit analytical expressions of the phase correction term are derived and shown to be proportional to the angular momentum dependent energy shift, present in the dispersion relations, for lead injection energies close to the subband energy.  Overall, this study finds that the material-dependent phase plays a significant role in both the dispersion relation and the conductance of QRs and thus provides a useful insight for future experimental efforts with regards to transport in QR systems.</p>


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2372 ◽  
Author(s):  
Fang Ren ◽  
Yue Yin ◽  
Yunyu Wang ◽  
Zhiqiang Liu ◽  
Meng Liang ◽  
...  

High density of defects and stress owing to the lattice and thermal mismatch between nitride materials and heterogeneous substrates have always been important problems and limit the development of nitride materials. In this paper, AlGaN light-emitting diodes (LEDs) were grown directly on a single-layer graphene-covered Si (111) substrate by metal organic chemical vapor deposition (MOCVD) without a metal catalyst. The nanorods was nucleated by AlGaN nucleation islands with a 35% Al composition, and included n-AlGaN, 6 period of AlGaN multiple quantum wells (MQWs), and p-AlGaN. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) showed that the nanorods were vertically aligned and had an accordant orientation along the [0001] direction. The structure of AlGaN nanorod LEDs was investigated by scanning transmission electron microscopy (STEM). Raman measurements of graphene before and after MOCVD growth revealed the graphene could withstand the high temperature and ammonia atmosphere in MOCVD. Photoluminescence (PL) and cathodoluminescence (CL) characterized an emission at ~325 nm and demonstrated the low defects density in AlGaN nanorod LEDs.


2019 ◽  
Vol 33 (31) ◽  
pp. 1950384
Author(s):  
Di Lu ◽  
Yu-E Yang ◽  
Weichun Zhang ◽  
Caixia Wang ◽  
Jining Fang ◽  
...  

We have investigated Raman spectra of the G and 2D lines of a single-layer graphene (SLG) with metallic contacts. The shift of the G and 2D lines is correlated to two different factors. Before performing annealing treatment or annealing under low temperature, the electron transfer on graphene surface is dominated by nonuniform strain effect. As the annealing treatment is enhanced, however, a suitable annealing treatment can eliminate the nonuniform strain effect where the relative work function (WF) between graphene and metal becomes a main factor to determine electronic transfer. Moreover, it is confirmed that the optimized annealing treatment can also decrease effectively the structural defect and induced disorder in graphene due to metallic contacts.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueling Cheng ◽  
Yunshan Wang

AbstractOptoelectronic devices in the UV range have many applications including deep-UV communications, UV photodetectors, UV spectroscopy, etc. Graphene has unique exciton resonances, that have demonstrated large photosensitivity across the UV spectrum. Enhancing UV absorption in graphene has the potential to boost the performance of the various opto-electronic devices. Here we report numerical study of UV absorption in graphene on aluminum and magnesium hole-arrays. The absorption in a single-layer graphene on aluminum and magnesium hole-arrays reached a maximum value of 28% and 30% respectively, and the absorption peak is tunable from the UV to the visible range. The proposed graphene hybrid structure does not require graphene to be sandwiched between different material layers and thus is easy to fabricate and allows graphene to interact with its surroundings.


2021 ◽  
Vol 18 (3) ◽  
pp. 316-320 ◽  
Author(s):  
Heejin Lim ◽  
Sun Young Lee ◽  
Yereum Park ◽  
Hyeonggyu Jin ◽  
Daeha Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document