scholarly journals Energy Consumption Analysis and Diagnosis of Heating System

Author(s):  
Zhang Peng

The gas boiler house is responsible for heating 308,000 m2 of residents in the community, and the historical heating energy consumption reached 3,000 tons of standard coal in 2012. The heating energy consumption index in this community is higher than that of heating energy consumption index in other residential communities. The heating system in this community is tested and analyzed comprehensively in this paper. The three aspects of heating system heat source, pipe network transmission and distribution and thermal user are combed and analyzed in this paper, to look for the energy-saving potential of each link. It is found that the exhaust gas temperature is 175℃ through the test of thermal efficiency of 2 # boiler in XX Community, and the heat loss of exhaust gas is higher. Meanwhile, it is found that the exhaust gas temperature is too high in all boilers through checking the operation record. It is found that the system water recharge is larger and the problems of leaking and aging thermal insulation layer and pipeline appear in the heating network through operation record analysis and on-site inspection. The analysis shows that there is a problem of hydraulic imbalance through the on-site test on the wall temperature of the supply pipe of the hot water supply wells in the residential buildings near, middle and far-ends. Analyze the problem existing in the heating system in XX Community, and put forward some corresponding energy saving technical proposals, such as flue gas condensing waste heat recovery, hydraulic balance adjustment and pipeline insulation improvement according to on-site survey and analysis; meanwhile, estimate the energy saving effect and the investment payback period.It is expected to realize the energy saving 728.72 tce and energy saving benefit of 1.4415 million yuan through three measures for energy saving and technicalm transformation. Estimated investment cost is 3.16 million yuan.

2013 ◽  
Vol 448-453 ◽  
pp. 1269-1272
Author(s):  
Zhao Chen ◽  
Li Bai ◽  
Feng Li

In this paper, the software of DeST was used to simulate the heating energy consumption by the year of a typical energy-saving residential building in the city of Changchun. Comparing the energy consumption of the top and bottom,the middle room and the edges rooms ,we get the reasons for the uneven heating and put forward the corresponding solutions, which provide the reference for heating system design.


2015 ◽  
Vol 36 (3) ◽  
pp. 3-14 ◽  
Author(s):  
Piotr Krawczyk ◽  
Krzysztof Badyda ◽  
Jacek Szczygieł ◽  
Szczepan Młynarz

Abstract Distribution of the exhaust gas temperature within the furnace of a grate boiler greatly depends on its operating parameters such as output. It has a considerably different character than temperature distributions in other types of boilers (with pulverised or fluidised bed), as it varies considerably across the chamber. Results presented in this paper have been obtained through research of a grate-fired hot water boiler with a nominal rating of some 30 MW. Measurements have been taken by introducing temperature sensors into prearranged openings placed in the boiler side walls. Investigation has been carried out for different output levels. Tests involved thermocouples in ceramic coating and aspirated thermocouples. The latter were used to eliminate influence of radiative heat transfer on measured results. Values obtained with both methods have been cross-checked.


2019 ◽  
Vol 116 ◽  
pp. 00017 ◽  
Author(s):  
Edyta Dudkiewicz ◽  
Paweł Szałański

Heating of large-cubage buildings accounts for significant share of energy consumption. The radiant heating system using gas heaters is a common solution for large-cubage halls and is considered to be energy efficient. There is a possibility of additional heat energy recovery from the flue gases of gas radiant heaters because new solutions were introduced to the market. Furthermore heat recovery consists the most promising solution and develop during the recent years rapidly. On the other hand, few works have been dedicated to heat recovery from exhaust gas but none of them consider exhaust gas from radiant heaters. Exhaust gas temperature depends on the type and efficiency of the gas heater. The selection of both the type of radiant heaters and the heat recovery system requires many factors to be taken into account. This study consider possibilities for application of different heat exchangers in exhaust gases system of gas radiant heaters. The authors propose to classify exhaust gas heat recovery systems in dependence on intermediary medium: water/air, gas heaters type: ceramic/tube and number (single/group) and their mounting location.


2013 ◽  
Vol 291-294 ◽  
pp. 976-979
Author(s):  
Hui Xing Li ◽  
Wei Wang ◽  
Guo Hui Feng

Green residential building is energy conservation, environmental protection, healthy and comfortable and stress efficiency. Green building respects the local natural and humanities, climate. Adjust measures to local conditions, use local materials, so there is no definite construction patterns and rules. In this paper a green residential buildings from Shenyang, focus on the analysis of the well insulated building envelope, radiant floor heating system with control system, solar hot water system in the building. At the same time, analysis of the energy saving technology can reduce energy consumption and CO2 emissions compare with "Residential building energy saving design standards "at Liaoning area. The project gives some experience to other designers in the process of green buildings design and promotes it constructed in the northeastern regions.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Qin Zhao ◽  
Xiaona Fan ◽  
Qing Wang ◽  
Guochen Sang ◽  
Yiyun Zhu

How to create a healthy and comfortable indoor environment without causing a substantial increase in energy consumption has become a strategic problem that the development of all countries must face and solve. According to the climatic conditions of Qinba Mountains in China, combined with the characteristics of local rural residential buildings and residents’ living habits, the field survey and theoretical analysis were used to study the thermal environment status and the heating energy consumption condition of local rural residential buildings. The thermal design method of walls for the local rural energy-saving buildings based on the indoor uniform radiation field was explored by using the outdoor comprehensive temperature function expressed by the fourth-order harmonic Fourier series as the boundary condition of the wall thermal analysis. ANSYS CFX was adopted to study the suitability of the energy-saving wall structure designed by the above method. The results show that the indoor thermal environment of local rural residential buildings in winter is not ideal and the heating energy consumption is high, but this area has the geographical advantage to develop solar energy buildings. It is proposed that the indoor thermal comfort temperature of local rural residential buildings in winter should not be lower than 14°C. When the internal surface temperature of the external walls in different orientations are equally based on the design principle of uniform radiation field, the heat transfer coefficient of the east wall, the west wall, and the north wall of the local rural residential buildings is 1.13 times, 1.06 times, and 1.14 times of the south wall heat transfer coefficient, respectively. The energy-saving structural wall with KPI porous brick as the main material and the south wall heat transfer coefficient of 0.9 W/(m2·K) is the most suitable energy-saving wall for local rural residential buildings.


2021 ◽  
Vol 261 ◽  
pp. 01059
Author(s):  
Xujing Zhai ◽  
Shoutao Tian ◽  
Kelin Zhu ◽  
Pan Huang ◽  
Jin Yu ◽  
...  

Based on an example of a gas-fired boiler for an industrial user in Tianjin, the absorption heat pump technology was used to carry out energy-saving transformation of the above boiler. The actual test was carried out on the gas flow, exhaust gas temperature and other parameters from January 2, 2018 to February 26, 2018. And then, the thermal efficiency of the boiler was analysed. The results show that after the energy-saving transformation, the exhaust gas temperature of the gas-fired boiler can be reduced from 140 °C to about 40 °C, and the overall thermal efficiency of the boiler also rises from 89.5% to 101.3%, which is 13.2% higher than that before optimization. According to the economic analysis, the energy-saving reconstruction project can achieve an energy-saving economic benefit of 1.598 million yuan throughout the year, with obvious energy-saving and emission reduction benefits.


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 442
Author(s):  
Xiaoyue Zhu ◽  
Bo Gao ◽  
Xudong Yang ◽  
Zhong Yu ◽  
Ji Ni

In China, a surging urbanization highlights the significance of building energy conservation. However, most building energy-saving schemes are designed solely in compliance with prescriptive codes and lack consideration of the local situations, resulting in an unsatisfactory effect and a waste of funds. Moreover, the actual effect of the design has yet to be thoroughly verified through field tests. In this study, a method of modifying conventional building energy-saving design based on research into the local climate and residents’ living habits was proposed, and residential buildings in Panzhihua, China were selected for trial. Further, the modification scheme was implemented in an actual project with its effect verified by field tests. Research grasps the precise climate features of Panzhihua, which was previously not provided, and concludes that Panzhihua is a hot summer and warm winter zone. Accordingly, the original internal insulation was canceled, and the shading performance of the windows was strengthened instead. Test results suggest that the consequent change of SET* does not exceed 0.5 °C, whereas variations in the energy consumption depend on the room orientation. For rooms receiving less solar radiation, the average energy consumption increased by approximately 20%, whereas for rooms with a severe western exposure, the average energy consumption decreased by approximately 11%. On the other hand, the cost savings of removing the insulation layer are estimated at 177 million RMB (1 USD ≈ 6.5 RMB) per year. In conclusion, the research-based modification method proposed in this study can be an effective tool for improving building energy efficiency adapted to local conditions.


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


Sign in / Sign up

Export Citation Format

Share Document