scholarly journals Pengereman Dinamik Motor Induksi 3 Fase 220V/380V

Author(s):  
Moch Faishol Yusron ◽  
Joko . .

ABSTRAKAlat pengendali motor listrik sangat berpengaruh terhadap kelangsungan proses produksi baikpengendalian pada saat mulai, pengendalian kecepatan (putaran), pengendalian pengereman dan pengendalianpada saat berhenti. Khususnya pengendalian motor induksi pada saat pengereman, diperlukan sistem pengendaliyang handal, efektif, efesien dan dapat bekerja secara terus-menerus. Penelitian ini merupakan hasil kajiantentang rancang bangun pembuatan alat pengendali pengereman dinamik motor induksi tiga fase 220V/380V.Tujuan dari pembuatan alat pengendali ini digunakan sebagai sistem pengendalian pengereman motor tiga fase220V/380V yang dapat diaplikasikan pada peralatan produksi di industri. Dilihat dari hasil pengujian, waktuberhentinya putaran motor listrik tiga fase menggunakan pengereman dinamik jauh lebih cepat dibandingkantanpa menggunakan pengereman dinamik. Waktu yang dibutuhkan untuk menghentikan putaran motor listriktiga fase dengan beban sembilan besi (lempeng) menggunakan pengereman dinamik dibutuhkan waktu 6,8sedangkan tanpa menggunakan pengereman dinamik waktu yang dibutuhkan 221 detik.Kata kunci : Industri, Motor Induksi, Sistem Pengereman.ABSTRACTElectric motor control device affects the continuity of the production process better control at the start,controlling the speed (rotation), and the control of braking control when stopping. In particular the control ofinduction motor during braking, the necessary control systems that are reliable, effective, efficient and can workcontinuously. This study is the result of a study of design-making tool of dynamic braking control of three-phaseinduction motor 220V/380V. The objective of this control device is used as the motor braking control system ofthree-phase 220V/380V can be applied to the production equipment in the industry. Judging from the results ofthe test, when the cessation of a three-phase electric motor rotation applied dynamic braking is much faster thanwithout the use of dynamic braking. The time needed to stop the three-phase electric motor with a nine iron load(plate) using dynamic braking takes 6.8, where as without the use of dynamic braking time required 221seconds.Keywords: Industry, Induction Motor, Braking System.

2016 ◽  
Vol 10 (1) ◽  
pp. 70-77
Author(s):  
Jantri Sirait ◽  
Sulharman Sulharman

Has done design tool is a tool of refined coconut oil coconut grater, squeezer coconut milk and coconut oil heating, with the aim to streamline the time of making coconut oil and coconut oil increase production capacity. The research method consists of several stages, among others; image creation tool, procurement of materials research, cutting the material - the material framework of tools and performance test tools. The parameters observed during the performance test tools is time grated coconut, coconut milk bleeder capacity, the capacity of the boiler and the heating time of coconut oil. The design tool consists of three parts, namely a tool shaved coconut, coconut milk wringer and coconut milk heating devices. Materials used for the framework of such tools include iron UNP 6 meters long, 7.5 cm wide, 4 mm thick, while the motor uses an electric motor 0.25 HP 1430 rpm and to dampen the rotation electric motor rotation used gearbox with a ratio of round 1 : 60. the results of the design ie the time required for coconut menyerut average of 297 seconds, coconut milk wringer capacity of 5 kg of processes and using gauze pads to filter coconut pulp, as well as the heating process takes ± 2 hours with a capacity of 80 kg , The benefits of coconut oil refined tools are stripping time or split brief coconut average - average 7 seconds and coconut shell can be used as craft materials, processes extortion coconut milk quickly so the production capacity increased and the stirring process coconut oil mechanically.ABSTRAKTelah dilakukan rancang bangun alat olahan minyak kelapa yaitu alat pemarut kelapa, pemeras santan kelapa dan pemanas minyak kelapa, dengan tujuan untuk mengefisiensikan waktu pembuatan minyak kelapa serta meningkatkan kapasitas produksi minyak kelapa. Metode penelitian terdiri dari beberapa tahapan antara lain; pembuatan gambar alat, pengadaan bahan-bahan penelitian, pemotongan bahan - bahan rangka alat dan uji unjuk kerja alat. Parameter yang diamati pada saat uji unjuk kerja alat adalah waktu parut kelapa, kapasitas pemeras santan kelapa, kapasitas tungku pemanas serta waktu pemanasan minyak kelapa. Rancangan alat terdiri dari tiga bagian yaitu alat penyerut kelapa, alat pemeras santan kelapa dan alat pemanas santan kelapa. Bahan yang dipergunakan untuk rangka alat tersebut  yaitu besi UNP panjang 6 meter, lebar 7,5 cm, tebal 4 mm, sedangkan untuk motor penggerak menggunakan motor listrik 0,25 HP 1430 rpm dan untuk meredam putaran putaran motor listrik dipergunakan gearbox  dengan perbandingan putaran 1 : 60. Hasil dari rancangan tersebut yaitu waktu yang dibutuhkan untuk menyerut kelapa rata-rata 297 detik, kapasitas alat pemeras santan kelapa 5 kg sekali proses dan menggunakan kain kassa untuk menyaring ampas kelapa, serta Proses pemanasan membutuhkan waktu ± 2 jam dengan kapasitas 80 kg. Adapun keunggulan alat olahan minyak kelapa ini adalah waktu pengupasan atau belah kelapa singkat rata – rata 7 detik dan tempurung kelapa dapat digunakan sebagai bahan kerajinan, proses pemerasan santan kelapa cepat sehingga kapasitas produksi meningkat dan proses pengadukan minyak kelapa secara mekanis. Kata kunci : penyerut, pemeras, pemanas,minyak kelapa,olahan minyak kelapa.


2021 ◽  
Vol 11 (4) ◽  
pp. 1618
Author(s):  
Ping-Nan Chen ◽  
Yung-Te Chen ◽  
Hsin Hsiu ◽  
Ruei-Jia Chen

This paper proposes a passivity theorem on the basis of energy concepts to study the stability of force feedback in a virtual haptic system. An impedance-passivity controller (IPC) was designed from the two-port network perspective to improve the chief drawback of haptic systems, namely the considerable time required to reach stability if the equipment consumes energy slowly. The proposed IPC can be used to achieve stability through model parameter selection and to obtain control gain. In particular, haptic performance can be improved for extreme cases of high stiffness and negative damping. Furthermore, a virtual training system for one-degree-of-freedom sticking was developed to validate the experimental platform of our IPC. To ensure consistency in the experiment, we designed a specialized mechanical robot to replace human operation. Finally, compared with basic passivity control systems, our IPC could achieve stable control rapidly.


2021 ◽  
Author(s):  
Trisna Wati ◽  
Ilmiatul Masfufiah ◽  
Titiek Suheta ◽  
Novian Patria Uman Putra ◽  
Misbahul Munir

Author(s):  
O.V. Nepomnyashchiy ◽  
A.V. Tarasov ◽  
Yu.V. Krasnobaev ◽  
V.N. Khaidukova ◽  
D.O. Nepomnyashchiy

The problem of increasing the efficiency of power units of autonomous electric transport vehicles is considered. The task of creating a promising power system control device has been singled out. It is determined that in creating such devices, significant results can be obtained by using an intelligent module in the control loop of the electric drive. Goal. It is necessary to develop a power plant model with intelligent control, allowing to obtain data sets about currents, voltages and engine speeds in different modes of operation. The architecture of an intelligent control device, a PID controller based on a neural network, has been proposed; it has been proposed to exclude rotor angular velocity sensors from the classical feedback loop. The type and architecture of the neural network is defined. In the software environment MatLab the model of neuroemulator of the engine for formation of a training sample of a neural network by a method of Levenberg – Marquardt is developed. The trained neural network is implemented in the developed model of the electric motor control loop. The results of simulation of the intelligent control device showed a good convergence of the output influences generated by the neuroemulator with the actual parameters of the electric motor.


Author(s):  
Vladimir F. Telezhkin ◽  
◽  
Bekhruz B. Saidov ◽  

In this paper, we investigate the problem of improving data quality using the Kalman filter in Matlab Simulink. Recently, this filter has become one of the most common algorithms for filtering and processing data in the implementation of control systems (including automated control systems) and the creation of software systems for digital filtering from noise and interference, for example, speech signals. It is also widely used in many fields of science and technology. Due to its simplicity and efficiency, it can be found in GPS receivers, in devices for processing sensor readings for various purposes, etc. It is known that one of the important tasks that should be solved in systems for processing sensor readings is the ability to detect and filter noise. Sensor noise leads to unstable measurement data. This, of course, ultimately leads to a decrease in the accuracy and performance of the control device. One of the methods that can be used to solve the problem of optimal filtering is the development of cybernetic algorithms based on the Kalman and Wiener filters. The filtering process can be carried out in two forms, namely: hardware and software algorithms. Hardware filtering can be built electronically. However, it is less efficient as it requires additional circuitry in the system. To overcome this obstacle, you can use filtering in the form of programming algorithms in a single method. In addition to the fact that it does not require electronic hardware circuitry, the filtering performed is even more accurate because it uses a computational process. The paper analyzes the results of applying the Kalman filter to eliminate errors when measuring the coordinates of the tracked target, to obtain a "smoothed" trajectory and shows the results of the filter development process when processing an electrocardiogram. The development of the Kalman filter algorithm is based on the procedure of recursive assessment of the measured state of the research object.


2018 ◽  
Vol 166 ◽  
pp. 02002 ◽  
Author(s):  
Jonghyup Lee ◽  
Seibum Choi

While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB) and other brake-by-wire (BBW) systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1484 ◽  
Author(s):  
Shang-Ming Liu ◽  
Chia-Hung Tu ◽  
Chun-Liang Lin ◽  
Van-Tsai Liu

Most electric vehicles use regenerative brakes, since this kind of braking system design recycles electromotive force to increase electric power endurance during braking. This research proposes a sensor-free, integrated driving and braking control system that uses a space-vector-pulse-width module to synthesize stator current by purpose. It calculates the rotor position angle of the motor by detecting variation in the stator current and completes a closed-loop control. When the motor receives a brake command, the controller changes the inverter-switching sequence to generate reverse torque and a magnetic field to complete the driving or braking function using field-oriented control (FOC). This provides a smoother and more accurate motor control than sinusoidal commands with Hall feedback. Compared to the regenerative brake and rheostatic brake, the proposed braking system has a powerful braking torque and shorter reaction time. Comparisons of reaction times for a modified four-wheel electric vehicle equipped with a permanent magnet synchronous motor under neutral-sliding-status, FOC based braking, and short-circuit braking were conducted.


Sign in / Sign up

Export Citation Format

Share Document