THE METHODOLOGY OF MONITORING THE TWO-WAY REGULATION OF SOIL MOISTURE DURING THE OPERATION OF ENGINEERING RECLAMATION SYSTEMS

2021 ◽  
pp. 23-30
Author(s):  
K. S. SEMENOVA ◽  
◽  
O. V. KABLUKOV

The purpose of the performed research is, based on the analysis of field studies, to select a well (point) for the selection of averaged moisture in the inter-drainage space for monitoring reclamation systems, to justify the construction of drainage-humidification systems to regulate moisture in a fire-hazardous peat bog. To solve the problem, a scheme has been developed for organizing monitoring on engineering reclamation systems that provide a two-way regulation of the water regime in the root layer of the soil in the zone of unstable moisture, as well as for monitoring and ensuring fire safety of the entire peat profile. The article discusses measuring equipment for determining the dynamics of soil moisture which must be used to monitor reclamation systems. There are given the results of field studies on peat bogs of the floodplain of the Dubna River, Moscow region, namely: meteorological data and data on soil moisture. On the basis of the research carried out, a representative point of moisture sampling for monitoring of reclamation systems has been substantiated. The sampling point should be located on a typical plot with the same relief, the soil profile should be uniform with the properties and soil morphology characteristic of the entire field. Wells for sampling checks the value of the distance in ¼E (E is the distance between drains), in this case the measured value is close to the average value in relation to the entire section of the drainage-humidified system. For the soil conditions of the experimental site, the humidity in the selected well during the locking of the canal in the dry period of summer increased by 1.5 times reaching the fireproof one. It is noted that when supplying and maintaining a propped water level in a channel up to 85 cm deep for 5 or more hours, the humidity in the interdrains space rises to the value of the fire safety norm in the dry period.

1964 ◽  
Vol 12 (2) ◽  
pp. 111 ◽  
Author(s):  
RD Johnston

Two groups of four 9-year-old trees of P. radiata were isolated "droughted" by lining trenches, and covering the soil surface, with plastic film. Two similar groups served as controls. Soils in the control plots dried out to above pF 4.2 during a 6 weeks' drought in late summer, and again in a shorter dry period in autumn. Leaf water deficit (L.W.D.) was correlated with soil moisture tension (S.M.T.) while there was available soil moisture, and rose during the drought to a maximum of 22.8. Autumn rain which wet the upper part of the soil profile reduced the L.W.D. to a mean value of 12. In the droughted plots, S.M.T. rose to above pF 4.2 in the first six weeks and remained high for the rest of the experimental period. During normal weather with occasional light falls of rain, L.W.D. was maintained at about 17-significantly higher than the corresponding values for the control plots. With the onset of dry weather, L.W.D. in the droughted plots rose further, but not significantly higher than in the controls. L.W.D. decreased when rain occurred, although less than in the control plots. P. radiata is able to maintain moderate turgidity in its needles, even under very dry soil conditions, as long as there is frequent precipitation sufficient to wet the foliage.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Bo Gao ◽  
Melissa K. Mitton ◽  
Clay Bell ◽  
Daniel Zimmerle ◽  
T. K. K. Chamindu Deepagoda ◽  
...  

With the increased use of natural gas, safety and environmental concerns from underground leaking natural gas pipelines are becoming more widespread. What is not well understood in leakage incidents is how the soil conditions affect gas migration behavior, making it difficult to estimate the gas distribution. To shed light on these concerns, an increased understanding of subsurface methane migration after gas release is required to support efficient leak response and effective use of available technologies. In this study, three field-scale experiments were performed at the Methane Emission Technology Evaluation Center in Colorado State University to investigate the effect of soil textural heterogeneity, soil moisture, and leak rate (0.5 and 0.85 kg/h) on methane migration caused by leaking pipelines. Subsurface methane concentrations, in addition to soil moisture and meteorological data, were collected over time. A previously validated numerical model was modified and used to understand the observed methane distribution behavior. Results of this study illustrate that the influence of soil texture, leak rate, and moisture on subsurface methane distribution is determined by the relative contribution of advection and diffusion and closely related to the distance to the leak source. Advection dominates gas transport within 1–1.5 m of the leak source, driving the migration of high concentration contours. Beyond this distance, diffusion dominates migration of lower concentration contours to the far-field. Although large leak rates initially result in faster and further gas migration, the leak rate has little influence on the diffusion dominated migration farther from the leak source. Soil moisture and texture complicate gas behavior with texture variations and elevated soil moisture conditions playing a dominant role in locally increasing methane concentrations. Scenarios highlight the importance of understanding the effects of soil moisture, texture, and leak rate on gas migration behavior in an attempt to unravel their contribution to the gas concentration within the soil environment.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 708
Author(s):  
Phanthasin Khanthavong ◽  
Shin Yabuta ◽  
Hidetoshi Asai ◽  
Md. Amzad Hossain ◽  
Isao Akagi ◽  
...  

Flooding and drought are major causes of reductions in crop productivity. Root distribution indicates crop adaptation to water stress. Therefore, we aimed to identify crop roots response based on root distribution under various soil conditions. The root distribution of four crops—maize, millet, sorghum, and rice—was evaluated under continuous soil waterlogging (CSW), moderate soil moisture (MSM), and gradual soil drying (GSD) conditions. Roots extended largely to the shallow soil layer in CSW and grew longer to the deeper soil layer in GSD in maize and sorghum. GSD tended to promote the root and shoot biomass across soil moisture status regardless of the crop species. The change of specific root density in rice and millet was small compared with maize and sorghum between different soil moisture statuses. Crop response in shoot and root biomass to various soil moisture status was highest in maize and lowest in rice among the tested crops as per the regression coefficient. Thus, we describe different root distributions associated with crop plasticity, which signify root spread changes, depending on soil water conditions in different crop genotypes as well as root distributions that vary depending on crop adaptation from anaerobic to aerobic conditions.


Weed Research ◽  
2019 ◽  
Vol 59 (6) ◽  
pp. 490-500
Author(s):  
W Kaczmarek‐Derda ◽  
M Helgheim ◽  
J Netland ◽  
H Riley ◽  
K Wærnhus ◽  
...  

1951 ◽  
Vol 4 (3) ◽  
pp. 211
Author(s):  
GC Wade

The disease known as white root rot affects raspberries, and to a less extent loganberries, in Victoria. The causal organism is a white, sterile fungus that has not been identified. The disease is favoured by dry soil conditions and high soil temperatures. It spreads externally to the host by means of undifferentiated rhizomorphs; and requires a food base for the establishment of infection. The spread of rhizomorphs through the soil is hindered by high soil moisture content and consequent poor aeration of the soil.


2008 ◽  
Vol 44 (1) ◽  
Author(s):  
L. Ridolfi ◽  
P. D'Odorico ◽  
F. Laio ◽  
S. Tamea ◽  
I. Rodriguez-Iturbe

2010 ◽  
Vol 14 (4) ◽  
pp. 613-626 ◽  
Author(s):  
S. Sinclair ◽  
G. G. S. Pegram

Abstract. In this paper we compare two independent soil moisture estimates over South Africa. The first estimate is a Soil Saturation Index (SSI) provided by automated real-time computations of the TOPKAPI hydrological model, adapted to run as a collection of independent 1 km cells with centres on a grid with a spatial resolution of 0.125°, at 3 h intervals. The second set of estimates is the remotely sensed ASCAT Surface Soil Moisture product, temporally filtered to yield a Soil Wetness Index (SWI). For the TOPKAPI cells, the rainfall forcing used is the TRMM 3B42RT product, while the evapotranspiration forcing is based on a modification of the FAO56 reference crop evapotranspiration (ET0). ET0 is computed using forecast fields of meteorological variables from the Unified Model (UM) runs done by the South African Weather Service (SAWS); the UM forecast fields were used, because reanalysis is not done by SAWS. To validate these ET0 estimates we compare them with those computed using observed meteorological data at a network of weather stations; they were found to be unbiased with acceptable scatter. Using the rainfall and evapotranspiration forcing data, the percentage saturation of the TOPKAPI soil store is computed as a Soil Saturation Index (SSI), for each of 6984 unconnected uncalibrated TOPKAPI cells at 3 h time-steps. These SSI estimates are then compared with the SWI estimates obtained from ASCAT. The comparisons indicate a good correspondence in the dynamic behaviour of SWI and SSI for a significant proportion of South Africa.


1980 ◽  
Vol 60 (4) ◽  
pp. 599-611 ◽  
Author(s):  
V. A. DIRKS ◽  
E. F. BOLTON

Regression and covariance analysis of a 13-yr rotation experiment of corn on Brookston clay soil showed that grain yield of corn could be related to each of nine other plant and soil measurements. Soil compaction as measured by bulk density was negatively associated with the level of leaf K in the plants, as well as available soil moisture. The major part of the yield difference between fertilized continuous corn and fertilized corn following alfalfa could be accounted for by multiple regression of grain yield on leaf N and K nutrient levels, soil compaction and soil moisture. Soil compaction was not affected or modified by fertilizer treatment. Response of corn grain yield to soil conditions, moisture and plant nutrient level appears to vary with rotation and fertilizer input.


Author(s):  
Cong WANG ◽  
Shuai WANG ◽  
Bojie FU ◽  
Lu ZHANG ◽  
Nan LU ◽  
...  

ABSTRACTSoil moisture is a key factor in the ecohydrological cycle in water-limited ecosystems, and it integrates the effects of climate, soil, and vegetation. The water balance and the hydrological cycle are significantly important for vegetation restoration in water-limited regions, and these dynamics are still poorly understood. In this study, the soil moisture and water balance were modelled with the stochastic soil water balance model in the Loess Plateau, China. This model was verified by monitoring soil moisture data of black locust plantations in the Yangjuangou catchment in the Loess Plateau. The influences of a rainfall regime change on soil moisture and water balance were also explored. Three meteorological stations were selected (Yulin, Yan'an, and Luochuan) along the precipitation gradient to detect the effects of rainfall spatial variability on the soil moisture and water balance. The results showed that soil moisture tended to be more frequent at low levels with decreasing precipitation, and the ratio of evapotranspiration under stress in response to rainfall also changed from 74.0% in Yulin to 52.3% in Luochuan. In addition, the effects of a temporal change in rainfall regime on soil moisture and water balance were explored at Yan'an. The soil moisture probability density function moved to high soil moisture in the wet period compared to the dry period of Yan'an, and the evapotranspiration under stress increased from 59.5% to 72% from the wet period to the dry period. The results of this study prove the applicability of the stochastic model in the Loess Plateau and reveal its potential for guiding the vegetation restoration in the next stage.


Sign in / Sign up

Export Citation Format

Share Document