Evaluation of unbonded Strip-STRP bearing based on current design guidelines

Author(s):  
M. B. Zisan ◽  
A. Igarashi

<p>The scrap tire rubber pad (STRP) made of natural or synthetic rubber offers substantial vertical stiffness and lateral flexibility, which are suitable properties for seismic isolator application. If a stacked STRP is used as an unbonded seismic isolator, the in-service stress-strain and displacement demand when rollover deformation is allowed can be different from that without considering the rollover. Although design guidelines are currently available for bonded type bearings, there are no established criteria for the unbonded bearings. To investigate the performance and stress-strain demand of unbonded strip-STRP isolators, finite element analysis (FEA) is performed to compare the analytical result with the existing design guidelines. The stress-strain demand of the strip-STRP isolators is substantially influenced by the <i>l/w </i>ratio, and it is found that the in-plane stresses are the key parameters in the determination of the allowable displacement and the effective length. The analysis shows that an STRP isolator carrying a vertical load of 5.0 MPa can efficiently be utilized up to 230% shear deformation.</p>

Author(s):  
Ingrid E. Madera Sierra ◽  
Johannio Marulanda Casas ◽  
Peter Thomson

During the last years several options to replace the conventional steel-reinforced isolators have been investigated using different materials for the matrix and reinforcement to implement isolation system in buildings. As alternatives to natural rubber, recycled elastomers derived from tires and industrial leftover, scrap tire rubber pads and nanocomposite rubber, have been proposed. Furthermore, with the goal of replacing the inflexible, thick steel plates, a wide variety of fabric reinforcements, such as nylon, carbon, polyester, polyamide, glass and thin flexible steel plates, have been investigated. The manufacturing process and connections between the devices and the structure (bonded, unbonded and partially bonded) have also been studied. This paper presents an overview of the results from investigations where the mechanical properties of prototypes were determined through horizontal shear and vertical compression tests and, in certain cases, through finite element analysis with hyperelastic models. In order to facilitate the visualization and comparison between investigations, the results are tabulated and plotted. The organization and presentation of the results allows to identify important aspects implemented in different experimental programs and analytical models developed for low-cost isolators.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


2020 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Muhammad Bilal Adeel ◽  
Muhammad Asad Jan ◽  
Muhammad Aaqib ◽  
Duhee Park

The behavior of laterally loaded pile groups is usually accessed by beam-on-nonlinear-Winkler-foundation (BNWF) approach employing various forms of empirically derived p-y curves and p-multipliers. Averaged p-multiplier for a particular pile group is termed as the group effect parameter. In practice, the p-y curve presented by the American Petroleum Institute (API) is most often utilized for piles in granular soils, although its shortcomings are recognized. In this study, we performed 3D finite element analysis to develop p-multipliers and group effect parameters for 3 × 3 to 5 × 5 vertically squared pile groups. The effect of the ratio of spacing to pile diameter (S/D), number of group piles, varying friction angle (φ), and pile fixity conditions on p-multipliers and group effect parameters are evaluated and quantified. Based on the simulation outcomes, a new functional form to calculate p-multipliers is proposed for pile groups. Extensive comparisons with the experimental measurements reveal that the calculated p-multipliers and group effect parameters are within the recorded range. Comparisons with two design guidelines which do not account for the pile fixity condition demonstrate that they overestimate the p-multipliers for fixed-head condition.


Author(s):  
Milan Paudel ◽  
Fook Fah Yap

E-scooters are a recent trend and are viewed as a sustainable solution to ease the first and last mile problem in modern transportation. However, an alarming rate of accidents, injuries, and fatalities have caused a significant setback for e-scooters. Many preventive measures and legislation have been put on the e-scooters, but the number of accidents and injuries has not reduced considerably. In this paper, the current design approach of e-scooters has been analyzed, and the most common range of design parameters have been identified. Thereafter, validated mathematical models have been used to quantify the performance of e-scooters and relate them with the safety aspects. Both standing and seated riders on e-scooters have been considered, and their influence on the dynamic performance has been analyzed and compared with the standard 26-in wheel reference safety bicycle. With more than 80% of the accidents and injuries occurring from falling or colliding with obstacles, this paper tries to correlate the dynamics of uncontrolled single-track vehicles with the safety performance of e-scooters. The self-stability, handling, and braking effect have been considered as major performance matrices. The analysis has shown that the current e-scooter designs are not as stable as the reference safety bicycle. Moreover, these e-scooters have been found unstable within the most common range of legislated riding velocity. The results corroborate with the general perception that the current designs of e-scooters are less stable, easy to lose control, twitchy, or wobbly to ride. Furthermore, the standing posture of the rider on the e-scooter has been found dangerous while braking to avoid any disturbances such as potholes or obstacles. Finally, the front steering design guidelines have been proposed to help modify the current design of e-scooters to improve the dynamic performance, hence the safety of the e-scooter riders and the surroundings.


1985 ◽  
Vol 58 (4) ◽  
pp. 830-856 ◽  
Author(s):  
R. J. Cembrola ◽  
T. J. Dudek

Abstract Recent developments in nonlinear finite element methods (FEM) and mechanics of composite materials have made it possible to handle complex tire mechanics problems involving large deformations and moderate strains. The development of an accurate material model for cord/rubber composites is a necessary requirement for the application of these powerful finite element programs to practical problems but involves numerous complexities. Difficulties associated with the application of classical lamination theory to cord/rubber composites were reviewed. The complexity of the material characterization of cord/rubber composites by experimental means was also discussed. This complexity arises from the highly anisotropic properties of twisted cords and the nonlinear stress—strain behavior of the laminates. Micromechanics theories, which have been successfully applied to hard composites (i.e., graphite—epoxy) have been shown to be inadequate in predicting some of the properties of the calendered fabric ply material from the properties of the cord and rubber. Finite element models which include an interply rubber layer to account for the interlaminar shear have been shown to give a better representation of cord/rubber laminate behavior in tension and bending. The application of finite element analysis to more refined models of complex structures like tires, however, requires the development of a more realistic material model which would account for the nonlinear stress—strain properties of cord/rubber composites.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


Author(s):  
Narges Shayesteh Moghaddam ◽  
Mohammad Elahinia ◽  
Michael Miller ◽  
David Dean

Mandibular segmental defect reconstruction is most often necessitated by tumor resection, trauma, infection, or osteoradionecrosis. The standard of care treatment for mandibular segmental defect repair involves using metallic plates to immobilize fibula grafts, which replace the resected portion of mandible. Surgical grade 5 titanium (Ti-6Al-4V) is commonly used to fabricate the fixture plate due to its low density, high strength, and high biocompatibility. One of the potential problems with mandibular reconstruction is stress shielding caused by a stiffness mismatch between the Titanium fixation plate and the remaining mandible bone and the bone grafts. A highly stiff fixture carries a large portion of the load (e.g., muscle loading and bite force), therefore the surrounding mandible would undergo reduced stress. As a result the area receiving less strain would remodel and may undergo significant resorption. This process may continue until the implant fails. To avoid stress shielding it is ideal to use fixtures with stiffness similar to that of the surrounding bone. Although Ti-6Al-4V has a lower stiffness (110 GPa) than other common materials (e.g., stainless steel, tantalum), it is still much stiffer than the cancellous (1.5–4.5 GPa) and cortical portions of the mandible (17.6–31.2 GPa). As a solution, we offer a nitinol in order to reduce stiffness of the fixation hardware to the level of mandible. To this end, we performed a finite element analysis to look at strain distribution in a human mandible in three different cases: I) healthy mandible, II) resected mandible treated with a Ti-6Al-4V bone plate, III) resected mandible treated with a nitinol bone plate. In order to predict the implant’s success, it is useful to simulate the stress-strain trajectories through the treated mandible. This work covers a modeling approach to confirm superiority of nitinol for mandibular reconstruction. Our results show that the stress-strain trajectories of the mandibular reconstruction using nitinol fixation is closer to normal than if grade 5 surgical titanium fixation is used.


Sign in / Sign up

Export Citation Format

Share Document