scholarly journals Efficient media for high production of microbial lipase from Bacillus subtilis (BSK-L) using response surface methodology for enantiopure synthesis of drug molecules

Author(s):  
Indu Bhushan

Lipases are a multipurpose enzyme that holds a significant position in industrial applications due to its ability to catalyse a large number of reactions such as hydrolysis, esterification, interesterification, transesterification which makes it a potential candidate. It is also used for the separation of chiral drugs from the racemic mixture and this property of lipase is considered very important in pharmaceutical industries for the synthesis of enantiopure bioactive molecules. Assuming the tremendous importance of lipases, as stereoselective biocatalysts, in pharmaceuticals and various other commercial applications, industrial enzymologists have been forced to search for those microorganisms which are able to produce novel biocatalysts at reasonably high yield. In the present study microbial lipase was isolated from the water sample of pond at Katra, Jammu and Kashmir (India). This enzyme has shown wide specificity and higher enantioselectivity, which make it pharmaceutical important enzyme. To make it economical for industrial application, it was produced on cheap nutrient media using Response Surface Methodology and got maximum production. It was used for resolution of chiral drugs and the significant results obtained during the course of work shall have potential towards pharmaceutical industries.

Author(s):  
Zhao-Jun Wei ◽  
Le-Chun Zhou ◽  
Hua Chen ◽  
Gui-Hai Chen

Moranoline (1-Deoxynojirimycin, DNJ) is a piperidine alkaloid, and shows high inhibit activities to glucoamylase and ?-glucosidase. One DNJ high-yield strain of Streptomyces lawendulae was obtained after isolated form soil and mutated with the ultra violet (UV) and ethyl sulfate (DES), which named as TB-412, and can produce DNJ with 35.925 mg/L. Response surface methodology (RSM) was applied to optimize the parameters of DNJ yield from S. lawendulae TB-412. The effects of independent variables of fermentation, including time, temperature, initial pH and the soluble starch content were investigated. The statistical analysis showed that the fermentation time, pH and the soluble starch content, and the quadratics of time, temperature, pH and the soluble starch content, as well as the interactions between fermentation time and pH, and time and the soluble starch content, showed significant effects on DNJ yield. The optimal process parameters for DNJ production within the experimental range of the variables researched was at 11d, 27 °C, pH 7.5, and 8% soluble starch content. At this condition, the DNJ yield was predicted to be 42.875 mg/L.


Author(s):  
Zheng rong Xia ◽  
Yong chen Pei ◽  
Dong xu Wang ◽  
Shun Wang

Although permanent magnet couplings (PMCs) have been under research for many years and have found successful industrial applications, this is still a technology under development. Accurate parameter determination is of significance for performance analysis and critical decisions on PMC design. However, the determination can often lead to an unacceptable increase in computation, especially when finite elements (FE) are used. The study aims to develop an FE model that is used for the structural design of a standard-disc type PMC for optimal torque. For the quick and accurate design, an integration optimal solution of the response surface methodology (RSM) and the Taguchi’s method was proposed. To verify the simulation, a series of experimental investigations were conducted on a self-developed testing platform. Furthermore, for a minimum set of FE analyses (FEA), a quantitative indicator called contribution rate, which can reflect effect level of structure parameters on the torque, was given based on the Taguchi method. Apart from this, the orthogonal matrix was used for the reduction of the FE calculation. Based on the contribution rate, the response surface methodology was adopted for the optimal torque determination with no increase in the PM volume. According to the optimization results, a fitting formula, which considers the contribution rates of the optimization variables, was presented. The results suggest that the FE simulations agree very well with the experiments, and the fitting formula can be used in the PMC design.


2015 ◽  
Vol 40 (6) ◽  
Author(s):  
İrem Deniz ◽  
Esra İmamoğlu ◽  
Meltem Conk Dalay

AbstractObjective: Physical process parameters play a major role in the cultivation of cyanobacteria to provide high yield. The aim of this study was to optimize physical parameters such as light intensity and agitation rate which might affect the phycobiliprotein formations for cyanobacterial strains of Oscillatoria agardhii and Synechococcus nidulans using response surface methodology.Methods: The cyanobacterial strains were cultured in 250 mL flasks containing 100 mL of EM medium in orbital shaking incubator under the temperature of 22±2°C at different light intensities and agitation rates for 10 days. The experimental design was carried out using 2Results: The optimization solution of O. agardhii (approximately at 156 rpm under the light intensity of 65 μmol photons mConclusion: High agitation rate stimulated the faster growth than increased the light intensity for the growths of cyanobacterial strains.


2014 ◽  
Vol 955-959 ◽  
pp. 848-854
Author(s):  
Yin Xiang Gao ◽  
Lei Yang ◽  
Yuan Gang Zu ◽  
Li Ping Yao

An ultrasound-assisted procedure for the extraction of pectin from heads ofHelianthus annuusL. (sunflower) was established. A Box–Behnken design (BBD) was employed to optimize the extraction temperature (X1: 30–50°C), extraction time (X2: 20–40 min) and pH (X3: 2.5–3.5) to obtain a high yield of pectin with high degree of esterification (DE) from sunflower heads. Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield and DE. An optimization study using response surface methodology was performed and 3D response surfaces were plotted from the mathematical model. According to the RSM model, the highest pectin yield (23.11 ± 0.08%) and DE (39.85 ± 0.14%) can be achieved when the UAE process is carried out at 50°C for 40min using a hydrochloric acid solution of pH 3.0. These results suggest that ultrasound-assisted extraction could be a good option for the extraction of functional pectin from sunflower heads at industrial level.


2020 ◽  
Vol 12 (1) ◽  
pp. 352-358
Author(s):  
M.A. Ahmad ◽  
U. Isah ◽  
I.A. Raubilu ◽  
S.I. Muhammad ◽  
D. Ibrahim

Amylases are group of enzymes produced by plants, animals and microorganisms, the enzyme has the ability to hydrolyze or degrade starch molecules into polymers containing units of glucose, thus, it is one of the most useful enzymes used by industries dependent on starch in their production processes. The enzyme has varying applications in food, fermentation, textile, pharmaceutical industries among others. Generally, amylase from microbial sources (i.e. fungal and bacterial origin) has over shadowed others in industrial usage. As such, this Paper aimed at reviewing amylase enzyme as a whole and some of its common industrial applications. The review visited the types of amylase based on hydrolases classification, its sources with emphasis to microorganisms, methods of production as well as effects of some chemical and physical parameters. The review also discusses some of the most common industrial application or uses of amylase enzyme in food, brewing, chemicals, paper, pharmaceutical, textile industries to mention but few. In conclusion, the reviewers suggest the use of microbial amylase due to it easy and simple technique in production, lower capital investment, lower energy requirement and high yield during production, exploration of more microbes with enzyme production potentials as well as improved industrial Scale production of the amylase for the betterment of the economy and improved industrial production of products. Key: Amylase, Application, Enzyme, Industry, Microbes and Starch.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1482
Author(s):  
Cassandra Detti ◽  
Luana Beatriz dos Santos Nascimento ◽  
Cecilia Brunetti ◽  
Francesco Ferrini ◽  
Antonella Gori

Pistacia lentiscus leaves are used in several applications, thanks to their polyphenolic abundance. Thiswork aimed to characterize the polyphenols and to optimize the extraction conditions to shorten the time, decrease the consumption of solvent, and to maximize the yield of different classes of phenolics, which have diverse industrial applications. The variables were optimized by applying a Box–Behnken design. Galloyl and myricetin derivatives were the most abundant compounds, and two new tetragalloyl derivatives were identified by LC-MS/MS. According to the models, the maximum yields of polyphenols (51.3 ± 1.8 mg g−1 DW) and tannins (40.2 ± 1.4 mg g−1 DW) were obtained using 0.12 L g−1 of 40% ethanol at 50 °C. The highest content of flavonoids (10.2 ± 0.8 mg g−1 DW) was obtained using 0.13 L g−1 of 50% ethanol at 50 °C, while 0.1 L g−1 of 30% ethanol at 30 °C resulted in higher amounts of myricitrin (2.6 ± 0.19 mg g−1 DW). Our optimized extraction decreased the ethanolic fraction by 25% and halved the time compared to other methods. These conditions can be applied differently to obtain P. lentiscus extracts richer in tannins or flavonoids, which might be employed for various purposes.


2021 ◽  
Vol 1039 ◽  
pp. 518-536
Author(s):  
Abbas H. Jeryo ◽  
Jumaa S. Chiad ◽  
Wajdi S. Abbod

In this process, optimum laminating properties were used in producing prosthesis and orthoses were researched and selected based on high yield, ultimate stresses, stresses of bending and fatigue properties. The process of the optimal selection is the Response Surface Methodology (RSM), which has been used to reach two parameters: reinforcement perlon fiber and percent of multi-strand carbon MWCNT nanotube combined with the matrix resin. The response surface methodology is a combination of mathematician and statistic techniques which are used for experimental model building and analysis of problems. This technique revealed 13 separate laminations samples with a percentage of separate Perlon layers No. and MWCNT Wt %. Tests were conducted for all lamination materials as defined in RSM methods and rendered by vacuum system, including fatigue tests for the ideal laminating material as opposed to laminations developed in the prior study (three Tensile test, Bending test and Fatigue tests according to the ASTM D638 and D790 respectively). Tests from the system version 10.0.2 of Design Expert found lamination (10 perlon layers and 0.75% of MWCNTs) to be the best according to overall yield, ultimate and bending loads in the 12 other laminations. Fatigue eventually revealed that constraints were applied to the stamina tension (2,66, 1,66) for optimum lamination, relative to ten perlon lamination layers and 424 lamination respectively.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Abdul Azeez Abdu Aliyu ◽  
Jafri Mohd Rohani ◽  
Ahmad Majdi Abdul Rani ◽  
Hamidon Musa

In recent years, researchers have demonstrated increases interest in studies involving silicon carbide (SiC) materials due to several industrial applications. Extreme hardness and high brittleness properties of SiC make the machining of such material very difficult, time consuming and costly. Electrical discharge machining (EDM) has been regarded as the most viable method for the machining of SiC. The mechanism of EDM process is complex. Researchers have acknowledged a challenge in generating a model that accurately describes the correlation between the input parameters and the responses. This paper reports the study on parametric optimization of siliconized silicon carbide (SiSiC) for the following quality responses; material removal rate (MRR), tool wear ratio (TWR) and surface roughness (Ra). The experiments were planned using Face centered central composite design. The models which related MRR, TWR and Ra with the most significant factors such as discharge current (Ip), pulse-on time (Ton), and servo voltage (Sv) were developed. In order to develop, improve and optimize the models response surface methodology (RSM) was used. Non-linear models were proposed for MRR and Ra while linear model was proposed for TWR. The margin of error between predicted and experimental values of MRR, TWR and Ra are found within 6.7, 5.6 and 2.5% respectively. Thus, the excellent reproducibility of this experimental study is confirmed, and the models developed for MRR, TWR and Ra are justified to be valid by the confirmation tests.


2017 ◽  
Vol 46 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Rachna Sehrawat ◽  
Paramjit S. Panesar ◽  
Tanya L. Swer ◽  
Anit Kumar

Purpose This paper aims to extract colour from micro-organisms (as a source of natural pigments) using agro-industrial substrates to replace synthetic media by solid state fermentation. Nature is filled with colours. Due to health and environmental consciousness among people, use of synthetic colour has declined, and so the need to develop colour from cheap and easily available natural sources (plants, animals, micro-organisms and algae) using a cost-effective technique with higher yield and rapid growth. Monascus purpureus colour is a potent source of compounds (Dimerumic acid, Monacolin-k and -aminobutyric acid) having antimutagenic, antimicrobial and antiobesity, which helps in combating diseases. Design/methodology/approach Response surface methodology was used to optimise the biopigments extraction from Monascus purpureus using solid state fermentation. Findings The best optimised conditions for biopigments production using Monascus purpureus MTCC 369 were pH 5.4 at 32°C for 8 days 9 hours (8.9 days) from sweet potato peel and pea pod powder, 7.8 (w/w) and 3.9 per cent (w/w), respectively, which gave a final yield of 21 CVU/g. The model F-value of 69.18 and high value of adjusted determination coefficient 96.00 per cent implies high level of significance of the fitted model. Practical implications Extracted colour can be used in beverages, confectionery and pharmaceutical industries. Social implications Colour produced using Monascus purpureus MTCC 369 is a natural source. As consumers are reluctant to use synthetic colour because of the undesirable allergic reactions caused by them, so a biopigment produced is natural colouring compound with wide application in food sector. Originality/value Selected sources of carbon and nitrogen were not used earlier by any researcher to extract biopigment from Monascus purpureus MTCC 369.


Sign in / Sign up

Export Citation Format

Share Document