scholarly journals Air pollution dispersion modeling of runway and apron at Sam Ratulangi international airport

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Dewi Eviane ◽  
Taufik Abdillah Natsir ◽  
Nur Iswanto ◽  
Zulfadly Urufi ◽  
Mardiyanto Adji

Air pollution generated from airport activities has become public concern and the subject of more rigorous government regulations.  The Airport Operators are stipulated to control the pollution and for the accountability of air quality that might affect public health. The main objective of this study is to establish a model for the distribution of air pollutants and to predict their concentrations generated by the runway and apron operations at Sam Ratulangi International Airport (Manado) until 2024, in accordance with the airport expansion program. The data was collected in the airport surrounding area in 2018, while the climate data over a span of 10 years, from 2009 to 2018, was obtained from Sam Ratulangi Meteorological Station. The modeling on dispersion of air pollutant gases was developed by the Gaussian Plume Equation. The simulation was performed using AERMOD software, and the results visualized by GIS software. AERMOD software was recommended by the US-EPA to predict the impact of air pollutants. The results predicted that the maximum concentrations of NOx; HC; and CO generated by runway activities modeling in 2024 were 250 μg.m-3; 6.4 μg.m-3; and 87 μg.m-3 respectively. The results also predicted that the maximum concentrations of NOx; CO; and PM10 due to apron operational activities in 2024 were 260 μg.m-3; 892 μg.m-3; and 2.5 μg.m-3 respectively. The model predicted that in 2024 the air pollution at Sam Ratulangi International Airport will remain under the limit as defined in Indonesian Government Regulation No. 22 of 2021. To mitigate the future increase in air emissions due to the increase in airport capacity, the recommendation were proposed in the several areas, which were including operation management, technology, policies and airport regulations, as well as the provision of green area.

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1628
Author(s):  
Houli Zhang ◽  
Shibing You ◽  
Miao Zhang ◽  
Difei Liu ◽  
Xuyan Wang ◽  
...  

The impact of air pollution on human health is becoming increasingly severe, and economic losses are a significant impediment to economic and social development. This paper investigates the impact of air pollutants on the respiratory system and its action mechanism by using information on inpatients with respiratory diseases from two IIIA (highest) hospitals in Wuhan from 2015 to 2019, information on air pollutants, and meteorological data, as well as relevant demographic and economic data in China. This paper describes the specific conditions of air pollutant concentrations and respiratory diseases, quantifies the degree of correlation between the two, and then provides a more comprehensive assessment of the economic losses using descriptive statistical methods, the generalized additive model (GAM), cost of illness approach (COI), and scenario analysis. According to the findings, the economic losses caused by PM2.5, PM10, SO2, NO2, and CO exposure are USD 103.17 million, USD 70.54 million, USD 98.02 million, USD 40.35 million, and USD 142.38 million, for a total of USD 454.46 billion, or approximately 0.20% of Wuhan’s GDP in 2019. If the government tightens control of major air pollutants and meets the WHO-recommended criterion values, the annual evitable economic losses would be approximately USD 69.4 million or approximately 0.03% of Wuhan’s GDP in 2019. As a result, the relevant government departments must strengthen air pollution control to mitigate the impact of air pollution on population health and the associated economic losses.


Author(s):  
Shuqiong Huang ◽  
Hao Xiang ◽  
Wenwen Yang ◽  
Zhongmin Zhu ◽  
Liqiao Tian ◽  
...  

Tuberculosis (TB) has a very high mortality rate worldwide. However, only a few studies have examined the associations between short-term exposure to air pollution and TB incidence. Our objectives were to estimate associations between short-term exposure to air pollutants and TB incidence in Wuhan city, China, during the 2015–2016 period. We applied a generalized additive model to access the short-term association of air pollution with TB. Daily exposure to each air pollutant in Wuhan was determined using ordinary kriging. The air pollutants included in the analysis were particulate matter (PM) with an aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5), PM with an aerodynamic diameter less than or equal to 10 micrometers (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ground-level ozone (O3). Daily incident cases of TB were obtained from the Hubei Provincial Center for Disease Control and Prevention (Hubei CDC). Both single- and multiple-pollutant models were used to examine the associations between air pollution and TB. Seasonal variation was assessed by splitting the all-year data into warm (May–October) and cold (November–April) seasons. In the single-pollutant model, for a 10 μg/m3 increase in PM2.5, PM10, and O3 at lag 7, the associated TB risk increased by 17.03% (95% CI: 6.39, 28.74), 11.08% (95% CI: 6.39, 28.74), and 16.15% (95% CI: 1.88, 32.42), respectively. In the multi-pollutant model, the effect of PM2.5 on TB remained statistically significant, while the effects of other pollutants were attenuated. The seasonal analysis showed that there was not much difference regarding the impact of air pollution on TB between the warm season and the cold season. Our study reveals that the mechanism linking air pollution and TB is still complex. Further research is warranted to explore the interaction of air pollution and TB.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Mieczysław Szyszkowicz

Background. Ambient air pollution is a recognized risk factor for multiple health conditions. For some health problems, the impact of air pollution is particularly evident to the patients in a specific age range. Nonsimultaneous exposures to two or more air pollutants may have different relationships with health outcomes than do simultaneous exposures. Methods. Case-crossover technique was used to analyze data on emergency department (ED) visits for ischemic heart disease (IHD), epistaxis, and upper respiratory infection (URI). Conditional logistic regression models were used to estimate odds ratios and their 95% confidence intervals corresponding to an increase in an interquartile range of air pollutant concentrations. Results. The results for IHD show that for older patients (age 60+ years), the association between sulphur dioxide (SO2) exposure and IHD is weak. For ED visits for epistaxis (O3 and SO2 in one model) and URI (O3 and NO2 in one model), air pollutants lagged differently in the common model indicated significant statistical associations but not for common lags. Conclusion. The study findings, based on analyzed examples, suggest that (i) IHD cases in older age are less related to air pollution and (ii) air pollutants may affect some health conditions by a specific sequence of exposure occurrences.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1490
Author(s):  
Zhihua Su ◽  
Xin Li ◽  
Yunlong Liu ◽  
Bing Deng

The lockdown during the coronavirus disease 2019 (COVID-19) pandemic provides a scarce opportunity to assess the efficiency of air pollution mitigation. Herein, the monitoring data of air pollutants were thoroughly analyzed together with meteorological parameters to explore the impact of human activity on the multi-time scale changes of air pollutant concentrations in Guiyang city, located in Southwest China. The results show that the COVID-19 lockdown had different effects on the criteria air pollutants, i.e., PM2.5 (diameter ≤ 2.5 μm), PM10 (diameter ≤ 10 μm), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) concentrations. The lockdown caused a significant drop in NO2 concentration. During the first-level lockdown period, the NO2 concentration declined sharply by 8.41 μg·m−3 (45.68%). The decrease in NO concentration caused the “titration effect” to weaken, leading to a sharp increase in O3 concentration. Although human activities resumed partially and the “titration effect” enhanced certainly during the second-level lockdown period, the meteorological conditions became more conducive to the formation of O3 by photochemical reactions. Atmosphere oxidation was enhanced to promote the generation of secondary aerosols through gas–particle transitions, thus compensating for the reduced primary emission of PM2.5. The implication of this study is that the appropriate air pollution control policies must be initiated to suppress the secondary generation of both PM2.5 and O3.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Suranath Chomcheon ◽  
Nathnarong Khajohnsaksumeth ◽  
Benchawan Wiwatanapataphee ◽  
Xiangyu Ge

Abstract This paper focuses on effects of the wind flow velocity on the air flow and the air pollution dispersion in a street canyon with Skytrain. The governing equations of air pollutants and air flow in this study area are the convection–diffusion equations of species concentration and the Reynolds-averaged Navier–Stokes (RANS) equations of compressible turbulent flow, respectively. Finite element method is utilized for the solution of the problem. To investigate the impact of the air flow on the pattern of air pollution dispersion, three speeds of inlet wind in three different blowing directions are chosen. The results illustrate that our model can depict the airflows and dispersion patterns for different wind conditions.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M E L Brandao ◽  
B A L F Braga ◽  
M L C Martins ◽  
P L A A Pereira

Abstract Santos is a seaboard Brazilian city recognized by its port activity where the road and rail infrastructure along with the large transportation operation, displays an important factor to contribute with all kinds of toxic and air pollutants. Recent studies have suggested associations between air pollution and various birth outcomes. Pollutant gases such as NOx, O3 and particulate matter PM2,5, PM10 have been cited as factors involved in such outcomes. The present study aims to assess the relationship between atmospheric pollutants and perinatal outcomes in the city of Santos from Jan. 2012 to Dec. 2015. Cross-sectional study that analyzed 10.319 singleton births in an area set with 2 km radius of the monitoring stations. Birth weight and information on mother and pregnancy were obtained at the Brazilian “Born Alive National Information System”. Daily records of air pollutants (PM10, PM2.5, NO2 and O3), temperature and relative air humidity, for the study period, were obtained from São Paulo State Environmental Agency (CETESB). Associations between preterm birth and air pollutants mean levels at each gestational trimester were investigated using multiple logistic regression model controlled by the variables: infant sex, type of delivery, maternal education. prenatal care, and number of previous live births, temperature and relative air humidity. NO2 e PM2,5 was not associated with preterm birth. O3 was significantly associated in the first trimester in the fourth quartile (OR = 1,47 CI 95% 1,05; 2,07). PM10 was significantly associated in the first trimester for the fourth quartile (OR = 1,28 CI 95% 1,00; 1,64), second trimester for the second quartile (OR = 1,37 CI 95% 1,07; 1,77). Conclusions the results shows evidence that maternal exposure to air pollution especially during the first trimester of pregnancy may contribute to preterm birth. Further actions are needed towards controlling air pollution are strongly recommended for promoting early-life health. Key messages This is the first research of this kind that was made in Santos. It brings important evidence of the impact in the life of the population, especially those whose is not even born yet. It can be used as a resource to guide public policies in health, especially the guidelines that dictate the concentration of air pollutants and air quality.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2012 ◽  
Vol 610-613 ◽  
pp. 1895-1900 ◽  
Author(s):  
Shu Jiang Miao ◽  
Da Fang Fu

The tunnel module of a rather simple Lagrangian model GRAL (Grazer Langrange model) has been chosen to study air pollutant dispersion around tunnel portals in Nanjing inner ring. Two points have been made to popularize GRAL3.5TM (the tunnel module of a Lagrangian model GRAL; the update was in May 2003) and assure it more suitable for the actual situations in Nanjing. One is to derive a piecewise function of the intermediate parameter ‘stiffness’. Another is to take Romberg NOx-NO2 scheme into account. After these 2 works on GRAL3.5TM, NO2 dispersion from portals of all the 6 tunnels in Nanjing inner ring has been simulated. The importance of limiting urban traffic volume to control air quality around tunnel portals and roadways has been emphasized.


Sign in / Sign up

Export Citation Format

Share Document