scholarly journals Laboratory Investigation of Materials Type Effects on the Microsurfacing Mixture

2016 ◽  
Vol 2 (3) ◽  
pp. 86-94 ◽  
Author(s):  
Mohammad Shafaghat Lonbar ◽  
Mahmoud Nazirizad

Pavement preservation is a quintessential system of treating pavements at the optimum time to maximize their useful life. One of the preventive maintenance treatment options is using microsurfacing system as the acceptable and economical solution. This study presents a laboratory investigation of aggregate type and adhesive materials and their relationship to microsurfacing pavement properties such as cohesion, wet track abrasion loss, excess asphalt and compaction. The method of this study relies on ISSA A143, using the Cohesion 30 min and 60 min, Wet track abrasion loss, Loaded-wheel excess asphalt and finally Loaded-wheel compaction. The verification of this method was achieved through measuring the various factors of specimens constructed in laboratory using two different aggregate sources as river and mountain aggregates and two binders as CSS-1h and CQS-1h. The results showed that mixes contain riverine aggregates showed more cohesion properties. Base on wet track test results mixes, mixes containing riverine type aggregate were more resistant to abrasion. In addition CQS-1h emulsion showed better adhesiveness against abrasion in both types of aggregates in asphalt mixes. With increased amount of emulsions in mixes, load wheel values increased as well. Loaded wheel compaction test results confirmed that river based aggregates are more susceptible to rutting failure. The results of wheel tracking test illustrated that CSS-1h emulsion applied in mixes had better resistance to rutting.

2013 ◽  
Vol 668 ◽  
pp. 292-296
Author(s):  
Ya Li Ye ◽  
Chuan Yi Zhuang ◽  
Jia Bo Hu

With the early asphalt pavements have been into the stage of medium maintenance or overhaul, recycling is a very important way for waste asphalt mixtures. A sample was taken in the expressway from Huhhot to Baotou, and the waste mixtures were extracted from field and sieved; so that the new aggregates can be determined and mix design was carried. With the aid of the penetration, the softening point and the viscosity in 135°C test, the quantity of the regenerant and the asphalt content were ascertained. Through the high temperature stable performance, the anti-low temperature performance, the water stability and the Hamburg wheel-tracking test, the appropriate gradation and the optimum asphalt content were determined. The test results showed that the pavement performance of the waste asphalt mixture was enhanced obviously with hot in-place recycling, and it has achieved technical parameters for old asphalt mixture.


2010 ◽  
Vol 168-170 ◽  
pp. 86-93
Author(s):  
She Liang Wang ◽  
Xi Yu Zhu ◽  
Xian Tang

Different gradation types may have different particle contact behaviors for asphalt mixture, so that it holds diverse pavement performances. The particle contact theory explains the particle contact behaviors law during movement. A particle contact behaviors model was established, which is easy to describe and apply on the spot. A line contact stiffness model was used to simulate particle contact behaviors for gradation types of CA0.2, CA0.4, CA0.6 and CA0.8 when particle of asphalt mixture is moving with dead weight. Their pavement performances were verified with Marshall test, wheel tracking test, gyratory compacting test and the index of potential energy test under optimum asphalt content. Test results show that their service performance is identical to simulation result of particle contact during movement with dead weight. With the help of the research, it can supply some theoretical and applicative bases for an optimum mixture gradation design and indoor gradation simulating design for asphalt mixture.


2000 ◽  
Vol 1723 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Bouzid Choubane ◽  
Gale C. Page ◽  
James A. Musselman

Findings are summarized from an investigation performed to evaluate the suitability of a wheel-tracking device known as the asphalt pavement analyzer (APA) for assessing the rutting potential of asphalt mixes. The evaluation process consisted of correlating the APA’s predicted rutting with known field measurements. The correlation between beam and gyratory samples and the testing variability were also investigated. In addition, the APA test results were compared with those obtained using the Georgia loaded-wheel tester. The findings of this investigation indicated that the APA may be an effective tool to rank asphalt mixtures in terms of their respective rut performance. However, for each mixture type, the APA testing variability was significant between tests and between the three testing locations within each test. Differences in rut measurements of up to 4.7 and 6.3 mm were recorded for beam and gyratory samples, respectively. Therefore, using the APA as a clear pass-or-fail criterion for performance prediction purposes of asphalt mixtures may not be appropriate at this time. It should be noted that these findings are based on data collected on three mixes. Therefore, it is suggested that the APA testing variability (testing and testing locations within the device) be further assessed with a wider range of mixtures. The intent of such an assessment should not only be to correlate the APA results with field data but also to develop potential pass-or-fail limits and procedures.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3793
Author(s):  
Mukul Rathore ◽  
Viktors Haritonovs ◽  
Martins Zaumanis

Reclaimed asphalt (RA) and Warm mix asphalt (WMA) are two widely used environmentally friendly mixtures in the paving industry. This study compares the laboratory performance of conventional hot mix asphalt (HMA) with virgin WMA, and WMA containing 60% RA content, using thermal stress restrained specimen test, wheel tracking test, and indirect tensile strength test. Based on test results, a reduction of 15 °C in mixing temperature was achieved for WMA mixtures compared to HMA using the given chemical additive. The virgin WMA mixture showed superior cracking resistance but lower rutting resistance than HMA, and incorporation of RA material without any further modification in the binder, deteriorated both cracking and rutting performance of WMA. It was also shown that laboratory short-term aging can significantly affect the performance of the mixtures.


Author(s):  
Fan Yin ◽  
Chen Chen ◽  
Randy West ◽  
Amy Epps Martin ◽  
Edith Arambula-Mercado

The Hamburg wheel-tracking test (HWTT) is commonly used to evaluate the rutting resistance and moisture susceptibility of asphalt mixtures. Over the years, different test parameters have been proposed, including the traditional ones specified in AASHTO T 324 and several alternatives developed by asphalt researchers. This study was undertaken to refine the HWTT method toward enhancing its implementation as part of balanced mix design specifications for asphalt mixtures. A HWTT database was developed including test results of over 70 mixtures with a wide range of mixture components and production parameters. Data analyses were conducted to examine the relationships among various HWTT parameters, determine their correlations to field performance data, and estimate the within-laboratory repeatability of the test results. Two alternative rutting parameters, rutting resistance index ( RRI) and corrected rut depth ( CRD), were found to be advantageous over the traditional parameters of total rut depth ( TRD) and creep slope ( CS). RRI allows for direct comparison of results with different termination points, and CRD isolates the rut depth resulting from permanent deformation from that caused by stripping. Among all the rutting parameters, RRI had the best correlation to field rut depth, followed by CS, CRD, and TRD. Receiver operating characteristic analysis was conducted to determine the correspondence between HWTT results and pavement field performance related to moisture susceptibility. The analysis identified 9,000 passes as the best criterion for stripping inflection point and 2,000 passes for the alternative moisture susceptibility parameter, stripping number. Finally, the within-laboratory repeatability of HWTT rut depth measurements was determined.


2003 ◽  
Vol 1832 (1) ◽  
pp. 182-190 ◽  
Author(s):  
André de Fortier Smit ◽  
Fred Hugo ◽  
Dale Rand ◽  
Buzz Powell

One-third-scale model mobile load simulator (MMLS3) testing was conducted at the National Center for Asphalt Technology test track. Dry and wet-heated MMLS3 tests were done on five sections. The rutting performances of the sections under MMLS3 trafficking were compared with that under full-scale truck trafficking (truck test sections). A synthesis of the research included evaluation of results from laboratory tests done on cores taken from the MMLS3 test sections within and outside trafficked wheelpaths. Tests on the cores included wet and dry Hamburg wheel tracking, Superpave® shear tester frequency sweep, and semicircular bending (SCB) strength testing. Investigations included the evaluation of full-scale rutting data, laboratory wheel-tracking test results, and climatic data monitored on the track during full-scale truck trafficking. The project validated the rut prediction approach developed to compare MMLS3 and full-scale rutting performance and indicated that the MMLS3 may be used to estimate full-scale rutting at the track under specific conditions. Distress due to wet trafficking was also quantified as reduction in tensile strength as measured by the SCB. Conclusions were drawn and recommendations made for MMLS3 as well as continued full-scale testing at the track. Comparative full-scale rutting performance of the track sections evaluated may be quantified and ranked by the MMLS3 performance of these sections.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Mohammad Ashiqur Rahman ◽  
Rouzbeh Ghabchi ◽  
Musharraf Zaman ◽  
Syed Ashik Ali

AbstractDespite significant economic and environmental benefits, performance of warm mix asphalt (WMA) containing reclaimed asphalt pavement (RAP) remains a matter of concern. Among the current WMA technologies, the plant foaming technique (called “foamed WMA” in this study) has gained the most attention, since it eliminates the need for chemical additives. In the present study, the laboratory performance, namely rutting and moisture-induced damage potential of foamed WMA containing RAP were evaluated and compared with those of similar hot mix asphalt (HMA) containing identical amount of RAP. Dynamic modulus, Hamburg wheel tracking (HWT) and flow number tests were performed to assess the rutting resistance of the mixes. Also, stripping inflection point from HWT tests and tensile strength ratio after AASHTO T 283 and moisture induced sensitivity test (MIST) conditioning were used to evaluate the moisture-induced damage of asphalt mixes. It was found that MIST conditioning effectively simulates the moisture-induced damage and can capture the propensity of asphalt mixes to moisture damage more distinctly compared to AASHTO T 283 method due to application of cyclic loadings. The foamed WMA was found to exhibit higher rutting and moisture-induced damage potential due to lower mixing and compaction temperatures compared to HMA. However, the increase in RAP content was found to reduce rutting and moisture-induced damage potential for WMA. Therefore, the lower stiffness of foamed WMA may be compensated with the addition of stiffer binder from RAP.


Author(s):  
Leila Hashemian ◽  
Vinicius Afonso Velasco Rios ◽  
Alireza Bayat

This study investigated the performance of different materials in a micro-trench composite backfilling design. Laboratory tests were conducted to evaluate the effect of cold temperatures and freeze/thaw cycles on a cement grout and seven preparatory cold asphalt mixes. To compare the performance of cold mix asphalt and epoxy grout with hot mix asphalt as the host material, rutting tests and dynamic modulus tests at different loading frequencies and temperatures were conducted. Finally, laboratory scale micro-trench samples were prepared using different backfilling materials and were loaded using a wheel tracker after freeze/thaw conditioning. The results showed that cement grout could effectively be used to secure the conduit inside the trench. It was also concluded that using high-quality cold mix asphalt, a compatible material with hot mix asphalt, could improve micro-trench durability compared with epoxy grout.


2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii22-ii22
Author(s):  
Yoshiki Arakawa ◽  
Junko Suga ◽  
Yukinori Terada ◽  
Kohei Nakajima ◽  
Masahiro Tanji ◽  
...  

Abstract Objective: Kyoto University Hospital has introduced the cancer genomic profiling tests, Oncoprime in 2015, Guardant360 in 2018, which are not under insurance coverage, FoundationOne CDx(F1CDx) and OncoGuide NCC Oncopanel system(NCC OP) in 2019, which received approval for insurance coverage for the first time in Japan. We investigated the results of cancer genomic profiling test under insurance coverage in our hospital. Methods: A special facility for the cancer genomic profiling tests was produced. To perform the cancer genomic profiling test, an outpatient must visit the facility three times (learning, ordering of the test, and getting the results). The expert panels decide the final test results and treatment options with the all information of the patients. Results: From November 2019 to March 2020, 51 and 9 patients were tested with F1CDx and NCC OP, respectively. 16 patients (31%) of F1CDX and 2 patients (22%) of NCC OP got treatment recommendations from the expert panels. However, only 5 patients (9.8%) of F1CDX and 1 patient (11%) of NCC OP received the treatments. The secondary finding suspecting germline mutations was found in 8 patients of F1CDX. Conclusion: After the approval the cancer genomic profiling tests with insurance coverage in Japan, it becomes easy for the patients to perform the test and get the genetic information of the tumor. However, it remains not easy to receive the recommended drugs because of several limitations of their usages.


Sign in / Sign up

Export Citation Format

Share Document