scholarly journals Isolation and Characterization of Glutaminase-free L-asparaginase Produced by Staphylococcus sp. MGM1

2020 ◽  
Vol 2 (2) ◽  
pp. 46-55 ◽  
Author(s):  
Gholamhossein Ebrahimipour ◽  
Mohammad Yaghoobi Avini ◽  
Mahtab Ghorbanmovahhed

L-asparaginase is an important therapeutic enzyme used in combination with other drugs for therapy of Acute Lymphoblastic Leukemia (ALL). L-asparaginase catalyzes the conversion of asparagine to aspartic acid and ammonia. In recent years, this enzyme gained applications in many fields of science such as clinical research, pharmacological, and food industries. This study was aimed at isolation and identification of a strain with the ability to producing extracellular glutaminase free L-asparaginase from soil and determination of enzyme stability. The isolation was done on M9 medium. Biochemical tests and 16S rDNA sequence was used for strain identification. L-asparaginase was partially purified using ammonium sulfate precipitation, dialysis, and DEAE-anion exchange chromatography. The effect of pH and temperature on enzyme activity was investigated. The isolated bacteria were identified as Staphylococcus sp. The optimum pH and temperature for maximum L-asparaginase activity were found at 8 and 35 °C. The enzyme purification showed a single band around 115 kDa on SDS-Page. The optimal activity for the enzyme produced by MGM1 was similar to the physiological conditions of the human body, therefore, further studies on this enzyme would be of great value in finding a new efficient asparaginase enzyme.

2021 ◽  
pp. 11-19
Author(s):  
Naushaba Nazli ◽  
Rukhsar Masood ◽  
Muhmmad Salman ◽  
Bilal Nasir ◽  
Farah Shireen ◽  
...  

L-Asparaginase is a well know enzyme for its antineoplastic potential and is widely used to treat acute lymphoblastic leukemia and lymphosarcoma. The present work describes the isolation and characterization of novel L-asparaginase producing Bacillus strains from soil. Soil samples were collected from three different locations such as fruit garden, dairy farm and agricultural land in Peshawar Khyber Pakhtunkhwa, Pakistan. The isolates were screened to produce L-asparaginase in growth medium supplemented with 1% L-asparagine using a phenol red indicator. Among 30 bacterial isolates, only two strains initially coded as A5 and FG7 showed L-asparaginase activity. Based on biochemical and 16S rRNA sequencing analysis, the isolate A5 and FG7 were identified as Bacillus amyloliquefaciens and Bacillus proteolyticus respectively. Different factors like pH and time were optimized for maximum L-asparaginase activity. Bacillus amyloliquefaciens showed maximum asparaginase activity at pH 7 after 24 hours incubation at 30oC, while Bacillus proteolyticus showed optimum activity at pH 7 after 48 hours of incubation at 30oC. The present study first time reported the production of L-asparginase enzyme from Bacillus amyloliquefaciens and Bacillus proteolyticus. Keywords: L-asparaginase, Bacillusamyloliquefaciens, Bacillus proteolyticus, 16sRNA.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Sunil Kumar Singh ◽  
Meera Yadav ◽  
Sudha Yadava ◽  
Kapil Deo Singh Yadav

Mn peroxidase has been purified to homogeneity from the culture filtrate of a new fungal strainFomes durissimusMTCC-1173 using concentration by ultrafiltration and anion exchange chromatography on diethylaminoethyl (DEAE) cellulose. The molecular mass of the purified enzyme has been found to be 42.0 kDa using SDS-PAGE analysis. The values using MnSO4and H2O2as the variable substrates in 50 mM lactic acid-sodium lactate buffer pH 4.5 at were 59 μM and 32 μM, respectively. The catalytic rate constants using MnSO4and H2O2were 22.4 s−1and 14.0 s−1, respectively, giving the values of 0.38 μM−1s−1and 0.44 μM−1s−1, respectively. The pH and temperature optima of the Mn peroxidase were 4 and , respectively. The purified MnP depolymerises humic acid in presence of H2O2. The purified Mn peroxidase exhibits haloperoxidase activity at low pH.


Author(s):  
Nguyen Thi My Trinh ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Background: The recombinant human granulocyte colony stimulating factor con-jugated with polyethylene glycol (PEGylated GCSF) has currently been used as an efficient drug for the treatment of neutropenia caused by chemotherapy due to its long circulating half-life. Previous studies showed that Granulocyte Colony Stimula-ting Factor (GCSF) could be expressed as non-classical Inclusion Bodies (ncIBs), which contained likely correctly folded GCSF inside at low temperature. Therefore, in this study, a simple process was developed to produce PEGylated GCSF from ncIBs. Methods: BL21 (DE3)/pET-GCSF cells were cultured in the LiFlus GX 1.5 L bioreactor and the expression of GCSF was induced by adding 0.5 mM IPTG. After 24 hr of fermentation, cells were collected, resuspended, and disrupted. The insoluble fraction was obtained from cell lysates and dissolved in 0.1% N-lauroylsarcosine solution. The presence and structure of dissolved GCSF were verified using SDS-PAGE, Native-PAGE, and RP-HPLC analyses. The dissolved GCSF was directly used for the con-jugation with 5 kDa PEG. The PEGylated GCSF was purified using two purification steps, including anion exchange chromatography and gel filtration chromatography. Results: PEGylated GCSF was obtained with high purity (~97%) and was finally demonstrated as a form containing one GCSF molecule and one 5 kDa PEG molecule (monoPEG-GCSF). Conclusion: These results clearly indicate that the process developed in this study might be a potential and practical approach to produce PEGylated GCSF from ncIBs expressed in Escherichia coli (E. coli).


2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301
Author(s):  
Huiqin Wang ◽  
Guanzhen Gao ◽  
Lijing Ke ◽  
Jianwu Zhou ◽  
Pingfan Rao

A novel lectin-like protein with MW 63.2 kDa, designated as SBLP, has been isolated and characterized from the dried roots of Scutellaria baicalensis Georgi (Lamiaceae). SBLP was purified by ammonium sulfate precipitation and anion exchange chromatography. It is a glycoprotein according to a PAS staining assay and consisting of protein (86.0%) and sugar (14.0%). Its N-terminal amino acid sequence was determined as GSAVGFLY by Edman degradation. SBLP showed hemagglutinating activity against human and rooster erythrocytes, which were stable below 60°C and in the pH range of 4 −10. Furthermore, SBLP was found to be stimulated by Ca2+, Na+, Ba2+, Zn2+ ions, which suggested it was a metal-dependent lectin. SBLP inhibited the growth of Fusarium oxysporum f.sp. lycopersici and Alternaria eichhorniae in the a dose-dependent manner, and suppressed the proliferation of HepG2 tumor cells with an IC50 of 1.00 μM. This is the first report of a lectin from Radix Scutellariae.


Blood ◽  
1984 ◽  
Vol 63 (3) ◽  
pp. 510-517 ◽  
Author(s):  
IL Olsson ◽  
MG Sarngadharan ◽  
TR Breitman ◽  
RC Gallo

Abstract Mitogen-stimulated mononuclear blood cells produce differentiation inducing factors (DIFs) for the promyelocytic cell line HL-60. We report that DIF is produced constitutively by a malignant T lymphocyte line HUT-102. DIF was purified 7,000-fold from HUT-102 conditioned media by utilizing ion-exchange chromatography with DEAE-Sepharose, gel chromatography, Blue-Sepharose chromatography, and preparative SDS- polyacrylamide gel electrophoresis (SDS-PAGE). The final preparation is susceptible to protease treatment, has a molecular weight of 46,000, as determined by SDS-PAGE and approximately 55,000 by gel filtration, has an isoelectric point of approximately 5.2, does not adhere to lectin- Sepharose and is resistant to periodate oxidation, and is free of colony-stimulating factor. DIF induced maturation of HL-60 into phagocytizing nitro blue tetrazolium reducing cells with the morphological characteristics of myelomonocytic or monocyte-like cells. An activity, co-chromatographing with DIF, acts synergistically with retinoic acid to induce maturation not only of HL-60, but also of the monoblast-like cell line U-937 (measured as percentage of cells reducing NBT).


1988 ◽  
Vol 60 (03) ◽  
pp. 471-475 ◽  
Author(s):  
H Erdjument ◽  
D A Lane ◽  
H Ireland ◽  
V Di Marzo ◽  
M Panico ◽  
...  

SummaryAntithrombin Milano is an unusual antithrombin variant, exhibiting an abnormal, fast moving component on crossed immunoelectrophoresis (in the absence of heparin). Antithrombin isolated from the propositus could be resolved into two peaks on anion-exchange chromatography; anti thrombin Milano peak 1 of Mr ∼60,000 which could inhibit thrombin, and antithrombin Milano peak 2 of Mr ∼120,000 which was inactive. The latter component also reacted with antisera to both antithrombin and albumin on immunoblotting. Under reducing conditions, the ∼120,000 Mr component migrated on SDS-PAGE as two distinct bands with Mr ∼60,000, one of which reacted with antiserum to antithrombin and the other (of slower mobility) of which reacted with antiserum to albumin only. These and other results established the ∼120,000 Mr component to be an inactive, disulphide-linked variant antithrombin and albumin complex. The variant antithrombin was isolated, following reduction and S-carboxy-methylation, by reverse-phase HPLC and then it was fragmented with CNBr. A major CNBr pool containing the sequence Gly339-Met423 was treated with trypsin, followed by V8 protease. The resulting peptides were analysed by fast atom bombardment mass spectrometry (Fab-MS) mapping. A peptide of molecular mass 1086, corresponding to the normal sequence Ala382-Arg393, was almost absent from the mass spectrum, but an additional peptide of mass number 1772 was present. These results are almost identical to those found in another variant antithrombin, North-wick Park (Erdjument et al., J Biol Chem, 262: 13381, 1987; Erdjument et al., J Biol Chem, 263: 5589-5593, 1988), indicating the same single amino acid substitution of Arg393 to Cys.


1998 ◽  
Vol 333 (3) ◽  
pp. 839-845 ◽  
Author(s):  
Vivienne FOLEY ◽  
David SHEEHAN

Two similar glutathione S-transferases (GSTs), which do not bind to glutathione– or S-hexylglutathione–agarose affinity resins, have been purified from the yeast Yarrowia lipolytica. An approx. 400-fold purification was obtained by a combination of DEAE-Sephadex, phenyl-Sepharose, hydroxyapatite and Mono-Q anion-exchange chromatography. The native molecular mass of both proteins was estimated as approx. 110 kDa by both Superose-12 gel-filtration chromatography and non-denaturing electrophoresis. SDS/PAGE indicated a subunit mass of 50 kDa. Reverse-phase HPLC of purified proteins gave a single, well-resolved, peak, suggesting that the proteins are homodimers. Identical behaviour on HPLC, native electrophoresis and SDS/PAGE, N-terminal sequencing, sensitivity to a panel of inhibitors and identical specific activities with 1-chloro-2,4-dinitrobenzene as substrate suggest that the two isoenzymes are very similar. The enzymes do not immunoblot with antisera to any of the main GST classes, and N-terminal sequencing suggests no clear relationship with previously characterized enzymes, such as that of the fungus, Phanerochaete chrysosporium [Dowd, Buckley and Sheehan (1997) Biochem. J. 324, 243–248]. It is possible that the two isoenzymes arise as a result of post-translational modification of a single GST isoenzyme.


1994 ◽  
Vol 40 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Andreas Prokop ◽  
Peter Rapp ◽  
Fritz Wagner

Production of extracellular β-1, 3-glucanase activity by a monokaryotic Schizophyllum commune strain was monitored and results indicated that the β-glucanase activity consisted of an endo- β-1, 3-glucanase activity, besides a negligible amount of β-1, 6-glucanase and β-glucosidase activity. Unlike the β-1, 3-glucanase production of the dikaryotic parent strain S. commune ATCC 38548, the β-1, 3-glucanase formation of the monokaryon was not regulated by catabolite repression. The endo- β-1, 3-glucanase of the monokaryon was purified from the culture filtrate by lyophilization, anion exchange chromatography on Mono Q, and gel filtration on Sephacryl S-100. It appeared homogeneous on SDS-PAGE with a molecular mass of 35.5 kDa and the isoelectric point was 3.95. The enzyme was only active toward glucans containing β-1, 3-linkages, including lichenan, a β-1, 3-1, 4-D-glucan. It attacked laminarin in an endo-like fashion to form laminaribiose, laminaritriose, and high oligosaccharides. While the extracellular β-glucanases from the dikaryotic S. commune ATCC 38548 degraded significant amounts of schizophyllan, the endo- β-1, 3-glucanase from the monokaryon showed greatly reduced activity toward this high molecular mass β-1, 3-/β-1, 6-glucan. The Km of the endoglucanase, using laminarin as substrate, was 0.28 mg/mL. Optimal pH and temperature were 5.5 and 50 °C, respectively. The enzyme was stable between pH 5.5 and 7.0 and at temperatures below 50 °C. The enzyme was completely inhibited by 1 mM Hg2+. Growth of the monokaryotic S. commune strain was not affected by its constitutive endo- β-1, 3-glucanase formation.Key words: endo- β-1, 3-glucanase, Schizophyllum commune, monokaryon, constitutive endo- β-1, 3-glucanase formation.


Author(s):  
Sunčica Beluhan ◽  
Ivana Karmelić ◽  
Mirela Ivančić Šantek

A thermostable 5’-phosphodiesterase (5’-PDE, EC 3.1.4.1) was extracted from barley (Hordeum distichum var. Rex) malt rootlets. The purification procedure comprised acetone precipitation, S-Sepharose cation-exchange and DEAE-Sepharose anion-exchange chromatography. The enzyme was purified 101-fold with a recovery of 22% and a specific activity of 81.9 U mg-1 protein, Optimum enzyme activity was obtained at 70 °C, and pH 8.9. The SDS-PAGE profiling of the purified protein exhibited molecular weight of 116 kDa and revealed three sub-unit fractions of 26, 43, and 56 kDa making up its active configuration. The kinetic constants Km and Vmax were determined as 0.25 mM and 0.816 mmol min-1, respectively. Thermodynamic studies showed that the thermal inactivation of purified barley malt rootlets 5’-PDE followed the first-order kinetics, indicating inactivation energy (Ed) of 134 kJ mol-1. The half-life (t1/2) at 70 °C was estimated as 169 min. Thermodynamic parameters ΔH*, ΔS* and ΔG* were determined as a function of temperature and were 131.15 kJ mol-1, 37.01 kJ mol-1 K-1 and 118.4 kJ mol-1, respectively. The purified enzyme has long half-life with 11 days at 0 °C, 37 hours at 4 °C and 11 hours at room temperature. These results provide useful information about the factors that affects the activity of barley malt rootlets 5’-PDE and suggests a good indication for application of this enzyme in pharmaceutical and food industry.


1991 ◽  
Vol 278 (3) ◽  
pp. 765-769 ◽  
Author(s):  
M Neuburger ◽  
A Jourdain ◽  
R Douce

A three-step protocol was devised to purify H-protein, which can be readily released as a soluble protein from pea mitochondria. After the final step of purification (anion-exchange chromatography) the native enzyme was eluted as two distinct peaks at 250 and 350 mM-KCl if the lysis buffer contained glycine. Each from exhibited an identical Mr of 15000 on SDS/PAGE and they were not distinguishable by PAGE under non-denaturating conditions. Both forms catalysed the rapid fixation of [14C]bicarbonate to the carboxy group atom of glycine during the exchange reaction, whereas the reversible exchange of electrons between NADH and lipoamide bound to the H-protein in the presence of 5,5′-dithiobis-(2-nitrobenzoic acid) was seen only with the form eluted at 350 mM-KCl. During the early steps of H-protein isolation, when P- and H-protein react together in the presence of glycine, the methylamine intermediate bound to the lipoamide of the H-protein accumulates in the medium at the expense of oxidized H-protein. Under these conditions the methylamine intermediate, which is a rather stable structure, was easily separated from the oxidized H-protein on ion-exchange chromatography. The methylamine bound to the lipoamide of the H-protein prevented the reversible exchange of electrons between NADH and lipoamide. High concentrations of glycine were required for the loading of H-protein with methylamine catalysed by a large excess of P-protein.


Sign in / Sign up

Export Citation Format

Share Document