scholarly journals Data Analysis and Numerical Modelling to Detect Hydrodynamics and Sediment Transport in a semi Enclosed Basin

10.29007/h936 ◽  
2018 ◽  
Author(s):  
Francesca De Serio ◽  
Elvira Armenio ◽  
Diana De Padova ◽  
Michele Mossa

Current monitoring programs in the nearshore region are necessary to allow a thorough knowledge of coastline erosion as well as diffusion and dispersion of polluting tracers. Collecting a large amount of data in widespread areas is challenging, because of technical and economic limitations, thus numerical models are often preferred to simulate the hydrodynamics and the transport of tracers in extended areas with the desired level of precision. To be accurate, models need to be calibrated and validated by high quality field measurements. Therefore, to examine current and tracer patterns in a basin, using data and numerical modelling in conjunction could be the best practice. The aim of the present work is: i) to provide some information on the typical and recurrent processes occurring in a target basin, by analyzing a set of current field data; ii) to reproduce the principal current patterns and derive information on the possible sediment transport fluxes in the basin by applying mathematical modelling. The site selected for this study is a semi enclosed coastal sea, in southern Italy. The obtained results successfully confirm the typical hydrodynamic behavior of the basin, and delineate areas which are more exposed to erosion.






1995 ◽  
Vol 31 (7) ◽  
pp. 107-115 ◽  
Author(s):  
Ole Mark ◽  
Cecilia Appelgren ◽  
Torben Larsen

A study has been carried out with the objectives of describing the effect of sediment deposits on the hydraulic capacity of sewer systems and to investigate the sediment transport in sewer systems. A result of the study is a mathematical model MOUSE ST which describes sediment transport in sewers. This paper discusses the applicability and the limitations of various modelling approaches and sediment transport formulations in MOUSE ST. Further, the paper presents a simple application of MOUSE ST to the Rya catchment in Gothenburg, Sweden.



1998 ◽  
Vol 37 (1) ◽  
pp. 155-162
Author(s):  
Flemming Schlütter ◽  
Kjeld Schaarup-Jensen

Increased knowledge of the processes which govern the transport of solids in sewers is necessary in order to develop more reliable and applicable sediment transport models for sewer systems. Proper validation of these are essential. For that purpose thorough field measurements are imperative. This paper renders initial results obtained in an ongoing case study of a Danish combined sewer system in Frejlev, a small town southwest of Aalborg, Denmark. Field data are presented concerning estimation of the sediment transport during dry weather. Finally, considerations on how to approach numerical modelling is made based on numerical simulations using MOUSE TRAP (DHI 1993).



2021 ◽  
Vol 9 (6) ◽  
pp. 600
Author(s):  
Hyun Dong Kim ◽  
Shin-ichi Aoki

When erosion occurs, sand beaches cannot maintain sufficient sand width, foreshore slopes become steeper due to frequent erosion effects, and beaches are trapped in a vicious cycle of vulnerability due to incident waves. Accordingly, beach nourishment can be used as a countermeasure to simultaneously minimize environmental impacts. However, beach nourishment is not a permanent solution and requires periodic renourishment after several years. To address this problem, minimizing the period of renourishment is an economical alternative. In the present study, using the Tuvaluan coast with its cross-sectional gravel nourishment site, four different test cases were selected for the hydraulic model experiment aimed at discovering an effective nourishment strategy to determine effective alternative methods. Numerical simulations were performed to reproduce gravel nourishment; however, none of these models simultaneously simulated the sediment transport of gravel and sand. Thus, an artificial neural network, a deep learning model, was developed using hydraulic model experiments as training datasets to analyze the possibility of simultaneously accomplishing the sediment transport of sand and gravel and supplement the shortcomings of the numerical models.



2021 ◽  
Vol 13 (2) ◽  
pp. 283
Author(s):  
Junzhe Zhang ◽  
Wei Guo ◽  
Bo Zhou ◽  
Gregory S. Okin

With rapid innovations in drone, camera, and 3D photogrammetry, drone-based remote sensing can accurately and efficiently provide ultra-high resolution imagery and digital surface model (DSM) at a landscape scale. Several studies have been conducted using drone-based remote sensing to quantitatively assess the impacts of wind erosion on the vegetation communities and landforms in drylands. In this study, first, five difficulties in conducting wind erosion research through data collection from fieldwork are summarized: insufficient samples, spatial displacement with auxiliary datasets, missing volumetric information, a unidirectional view, and spatially inexplicit input. Then, five possible applications—to provide a reliable and valid sample set, to mitigate the spatial offset, to monitor soil elevation change, to evaluate the directional property of land cover, and to make spatially explicit input for ecological models—of drone-based remote sensing products are suggested. To sum up, drone-based remote sensing has become a useful method to research wind erosion in drylands, and can solve the issues caused by using data collected from fieldwork. For wind erosion research in drylands, we suggest that a drone-based remote sensing product should be used as a complement to field measurements.



Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2038
Author(s):  
Gennady Gladkov ◽  
Michał Habel ◽  
Zygmunt Babiński ◽  
Pakhom Belyakov

The paper presents recommendations for using the results obtained in sediment transport simulation and modeling of channel deformations in rivers. This work relates to the issues of empirical modeling of the water flow characteristics in natural riverbeds with a movable bottom (alluvial channels) which are extremely complex. The study shows that in the simulation of sediment transport and calculation of channel deformations in the rivers, it is expedient to use the calculation dependences of Chézy’s coefficient for assessing the roughness of the bottom sediment mixture, or the dependences of the form based on the field investigation data. Three models are most commonly used and based on the original formulas of Meyer-Peter and Müller (1948), Einstein (1950) and van Rijn (1984). This work deals with assessing the hydraulic resistance of the channel and improving the river sediment transport model in a simulation of riverbed transformation on the basis of previous research to verify it based on 296 field measurements on the Central-East European lowland rivers. The performed test calculations show that the modified van Rijn formula gives the best results from all the considered variants.



2021 ◽  
Vol 91 (10) ◽  
pp. 1040-1066
Author(s):  
Thomas C. Neal ◽  
Christian M. Appendini ◽  
Eugene C. Rankey

ABSTRACT Although carbonate ramps are ubiquitous in the geologic record, the impacts of oceanographic processes on their facies patterns are less well constrained than with other carbonate geomorphic forms such as isolated carbonate platforms. To better understand the role of physical and chemical oceanographic forces on geomorphic and sedimentologic variability of ramps, this study examines in-situ field measurements, remote-sensing data, and hydrodynamic modeling of the nearshore inner ramp of the modern northeastern Yucatán Shelf, Mexico. The results reveal how sediment production and accumulation are influenced by the complex interactions of the physical, chemical, and biological processes on the ramp. Upwelled, cool, nutrient-rich waters are transported westward across the ramp and concentrated along the shoreline by cold fronts (Nortes), westerly regional currents, and longshore currents. This influx supports a mix of both heterozoan and photozoan fauna and flora in the nearshore realm. Geomorphically, the nearshore parts of this ramp system in the study area include lagoon, barrier island, and shoreface environments, influenced by the mixed-energy (wave and tidal) setting. Persistent trade winds, episodic tropical depressions, and winter storms generate waves that propagate onto the shoreface. Extensive shore-parallel sand bodies (beach ridges and subaqueous dune fields) of the high-energy, wave-dominated upper shoreface and foreshore are composed of fine to coarse skeletal sand, lack mud, and include highly abraded, broken and bored grains. The large shallow lagoon is mixed-energy: wave-dominated near the inlet, it transitions to tide-dominated in the more protected central and eastern regions. Lagoon sediment consists of Halimeda-rich muddy gravel and sand. Hydrodynamic forces are especially strong where bathymetry focuses water flow, as occurs along a promontory and at the lagoon inlet, and can form subaqueous dunes. Explicit comparison among numerical models of conceptual shorefaces in which variables are altered and isolated systematically demonstrates the influences of the winds, waves, tides, and currents on hydrodynamics across a broad spectrum of settings (e.g., increased tidal range, differing wind and wave conditions). Results quantify how sediment transport patterns are determined by wave height and direction relative to the shoreface, but tidal forces locally control geomorphic and sedimentologic character. Similarly, the physical oceanographic processes acting throughout the year (e.g., daily tides, episodic winter Nortes, and persistent easterly winds and waves) have more impact on geomorphology and sedimentology of comparable nearshore systems than intense, but infrequent, hurricanes. Overall, this study provides perspectives on how upwelling, nutrient levels, and hydrodynamics influence the varied sedimentologic and geomorphic character of the nearshore areas of this high-energy carbonate ramp system. These results also provide for more accurate and realistic conceptual models of the depositional variability for a spectrum of modern and ancient ramp systems.



2013 ◽  
Vol 54 (64) ◽  
pp. 51-60 ◽  
Author(s):  
Aleksey Marchenko ◽  
Eugene Morozov ◽  
Sergey Muzylev

Abstract A method to estimate the flexural stiffness and effective elastic modulus of floating ice is described and analysed. The method is based on the analysis of water pressure records at two or three locations below the bottom of floating ice when flexural-gravity waves propagate through the ice. The relative errors in the calculations of the ice flexural stiffness and the water depth are analysed. The method is tested using data from field measurements in Tempelfjorden, Svalbard, where flexural-gravity waves were excited by an icefall at the front of the outflow glacier Tunabreen in February 2011.





Sign in / Sign up

Export Citation Format

Share Document