scholarly journals Alternating Turing machines and the analytical hierarchy

10.29007/t77g ◽  
2018 ◽  
Author(s):  
Daniel Leivant

We use notions originating in Computational Complexity to provide insight into the analogies between computational complexity and Higher Recursion Theory. We consider alternating Turing machines, but with a modified, global, definition of acceptance. We show that a language is accepted by such a machine iff it is Pi-1-1. Moreover, total alternating machines, which either accept or reject each input, accept precisely the hyper-arithmetical (Delta-1-1) languages. Also, bounding the permissible number of alternations we obtain a characterization of the levels of the arithmetical hierarchy..The novelty of these characterizations lies primarily in the use of finite computing devices, with finitary, discrete, computation steps. We thereby elucidate the correspondence between the polynomial-time and the arithmetical hierarchies, as well as that between the computably-enumerable, the inductive (Pi-1-1), and the PSpace languages.

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 304
Author(s):  
Florin Manea

In this paper we propose and analyse from the computational complexity point of view several new variants of nondeterministic Turing machines. In the first such variant, a machine accepts a given input word if and only if one of its shortest possible computations on that word is accepting; on the other hand, the machine rejects the input word when all the shortest computations performed by the machine on that word are rejecting. We are able to show that the class of languages decided in polynomial time by such machines is PNP[log]. When we consider machines that decide a word according to the decision taken by the lexicographically first shortest computation, we obtain a new characterization of PNP. A series of other ways of deciding a language with respect to the shortest computations of a Turing machine are also discussed.


Plant Disease ◽  
2015 ◽  
Vol 99 (11) ◽  
pp. 1578-1583 ◽  
Author(s):  
J. Mitrović ◽  
M. Smiljković ◽  
Erich Seemüller ◽  
Richard Reinhardt ◽  
Bruno Hüttel ◽  
...  

‘Candidatus Phytoplasma cynodontis’ is widespread in bermudagrass and has only been found in monocotyledonous plants. Molecular studies carried out on strains collected in Italy, Serbia, and Albania enabled verification of molecular variability in the 16S ribosomal RNA (rRNA) gene. Based on restriction fragment length polymorphism and sequence analyses, the strains from Serbia were clearly differentiated from all others and assigned to a new ribosomal DNA (rDNA) subgroup designated as 16SrXIV-C. A system for amplification of fragments containing the ‘Ca. P. cynodontis’ groEL gene was developed to enable study of its variability in related strains belonging to different 16SrXIV subgroups. Despite the fact that the groEL gene exhibited a greater sequence variation than 16S rRNA, the phylogenetic tree based on groEL gene sequence analysis was highly congruent with the 16S rDNA-based tree. The groEL gene analyses supported differentiation of the Serbian strains and definition of the new subgroup 16SrXIV-C. Phylogenetic analyses of both genes confirmed distinct phylogenetic lineages for strains belonging to 16SrXIV subgroups. Furthermore, groEL is the only nonribosomal marker developed for characterization of ‘Ca. P. cynodontis’ thus far, and its application in molecular surveys should provide better insight into the relationships among these phytoplasmas and correlation between strain differentiation and their geographical distribution.


2015 ◽  
Vol 27 (2) ◽  
pp. 123-142 ◽  
Author(s):  
MARCELLA ANSELMO ◽  
DORA GIAMMARRESI ◽  
MARIA MADONIA

A setX⊆ Σ** of pictures is a code if every picture over Σ is tilable in at most one way with pictures inX. The definition ofstrong prefix codeis introduced. The family of finite strong prefix codes is decidable and it has a polynomial time decoding algorithm. Maximality for finite strong prefix codes is also studied and related to the notion of completeness. We prove that any finite strong prefix code can be embedded in a unique maximal strong prefix code that has minimal size and cardinality. A complete characterization of the structure of maximal finite strong prefix codes completes the paper.


2021 ◽  
Vol 9 (4) ◽  
pp. 1-55
Author(s):  
Jiehua Chen ◽  
Piotr Skowron ◽  
Manuel Sorge

We propose two solution concepts for matchings under preferences: robustness and near stability . The former strengthens while the latter relaxes the classical definition of stability by Gale and Shapley (1962). Informally speaking, robustness requires that a matching must be stable in the classical sense, even if the agents slightly change their preferences. Near stability, however, imposes that a matching must become stable (again, in the classical sense) provided the agents are willing to adjust their preferences a bit. Both of our concepts are quantitative; together they provide means for a fine-grained analysis of the stability of matchings. Moreover, our concepts allow the exploration of tradeoffs between stability and other criteria of social optimality, such as the egalitarian cost and the number of unmatched agents. We investigate the computational complexity of finding matchings that implement certain predefined tradeoffs. We provide a polynomial-time algorithm that, given agent preferences, returns a socially optimal robust matching (if it exists), and we prove that finding a socially optimal and nearly stable matching is computationally hard.


1980 ◽  
Vol 45 (3) ◽  
pp. 417-438 ◽  
Author(s):  
Victor L. Bennison

Though researchers in the field of abstract computational complexity theory have utilized many of the tools of recursive function theory in the development of their field, the early results obtained (e.g., see [8]) seemed to be rather independent of results in recursion theory (at least to the extent that the results were not uniformly interesting to both varieties of theorists). It seems to have been generally accepted, however, that strong parallels of one form or another must exist between the two fields. Indeed, recent results of Blum and Marques [7], Morris [13], Soare [15] and Bennison [1], [3] have revealed a striking correspondence between complexity theoretic properties and recursion theoretic properties. These results are not contrived, but rather link together interesting properties which had arisen naturally and independently in their respective fields. This paper presents the results of research aimed at finding a recursion theoretic characterization for a complexity theoretic property which had arisen from the study of the speed-up phenomenon.In abstract computational complexity theory we are concerned with categorizing computable functions or sets according to their relative difficulty of computation. The phrase “difficult to compute” may take on different meanings depending on which criteria (complexity theoretic properties) we use to define what it means for a function or set to be hard to compute. In the abstract setting, however, such criteria should yield the same classes of functions or sets regardless of the underlying abstract complexity measure (in the sense of Blum [4], e.g., tape, time, etc.). In other words, such criteria should be measure-independent. In this paper we will be considering one way of defining “difficult to compute”. Namely, we shall say that a function or set is difficult to compute if it does not have a recursively enumerable complexity sequence as defined by Meyer and Fischer [12]. For a property to have a recursion theoretic characterization it must be measure-independent, for a recursion theoretic property is, by its very nature, measure-independent. It will not be immediately obvious whether or not the property of having an r.e. complexity sequence is measure-independent. We attack this question by first considering an alternative definition of an r.e. complexity sequence, one which is easily seen to be measure-independent.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


1986 ◽  
Vol 9 (3) ◽  
pp. 323-342
Author(s):  
Joseph Y.-T. Leung ◽  
Burkhard Monien

We consider the computational complexity of finding an optimal deadlock recovery. It is known that for an arbitrary number of resource types the problem is NP-hard even when the total cost of deadlocked jobs and the total number of resource units are “small” relative to the number of deadlocked jobs. It is also known that for one resource type the problem is NP-hard when the total cost of deadlocked jobs and the total number of resource units are “large” relative to the number of deadlocked jobs. In this paper we show that for one resource type the problem is solvable in polynomial time when the total cost of deadlocked jobs or the total number of resource units is “small” relative to the number of deadlocked jobs. For fixed m ⩾ 2 resource types, we show that the problem is solvable in polynomial time when the total number of resource units is “small” relative to the number of deadlocked jobs. On the other hand, when the total number of resource units is “large”, the problem becomes NP-hard even when the total cost of deadlocked jobs is “small” relative to the number of deadlocked jobs. The results in the paper, together with previous known ones, give a complete delineation of the complexity of this problem under various assumptions of the input parameters.


Author(s):  
Chiara Roberta Girelli ◽  
Francesca Serio ◽  
Rita Accogli ◽  
Federica Angilè ◽  
Antonella De Donno ◽  
...  

Background: Plants of genus Cichorium are known for their therapeutic and nutraceutical properties determined by a wealth of phytochemical substances contained in the whole plant. The aim of this paper was to characterize the metabolic profiles of local Salento chicory (Cichorium intybus L.) varieties (“Bianca”, “Galatina”, “Leccese”, and “Otranto”) in order to describe their metabolites composition together with possible bioactivity and health beneficial properties. Methods: The investigation was performed by 1H-NMR spectroscopy and Multivariate Analysis (MVA), by which the metabolic profiles of the samples were easily obtained and compared. Results: The supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis showed as “Bianca” and “Galatina” samples grouped together separated by “Leccese” and “Otranto” varieties. A different content of free amino acids and organic acids was observed among the varieties. In particular a high content of cichoric and monocaffeoyl tartaric acid was observed for the “Leccese” variety. The presence of secondary metabolites adds significant interest in the investigation of Cichorium inthybus, as this vegetable may benefit human health when incorporated into the diet. Conclusions: The 1H-NMR (Nuclear Magnetic Resonance Spectroscopy) based characterization of Salento chicory varieties allowed us to determine the potential usefulness and nutraceutical properties of the product, also providing a method to guarantee its authenticity on a molecular scale.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2021 ◽  
pp. 1-10
Author(s):  
Narjes Firouzkouhi ◽  
Abbas Amini ◽  
Chun Cheng ◽  
Mehdi Soleymani ◽  
Bijan Davvaz

Inspired by fuzzy hyperalgebras and fuzzy polynomial function (term function), some homomorphism properties of fundamental relation on fuzzy hyperalgebras are conveyed. The obtained relations of fuzzy hyperalgebra are utilized for certain applications, i.e., biological phenomena and genetics along with some elucidatory examples presenting various aspects of fuzzy hyperalgebras. Then, by considering the definition of identities (weak and strong) as a class of fuzzy polynomial function, the smallest equivalence relation (fundamental relation) is obtained which is an important tool for fuzzy hyperalgebraic systems. Through the characterization of these equivalence relations of a fuzzy hyperalgebra, we assign the smallest equivalence relation α i 1 i 2 ∗ on a fuzzy hyperalgebra via identities where the factor hyperalgebra is a universal algebra. We extend and improve the identities on fuzzy hyperalgebras and characterize the smallest equivalence relation α J ∗ on the set of strong identities.


Sign in / Sign up

Export Citation Format

Share Document