scholarly journals Metal Composites Behaviour Under Biaxial Stresses

2017 ◽  
Vol 23 (4) ◽  
pp. 307
Author(s):  
J. Jai ◽  
M.N. Berhan

For this study, different volume fraction (vol.%) of particulate alumina (Al2O3)reinforced aluminium alloy (Al 6061) with 5 vol.%, 15 vol.% and 25 vol.% are produced by powder metallurgy method. These samples were subjected to biaxial stresses in order to investigate the behaviour of the metal matrix composites (MMCs). Microstructure analysis on the individual sample before and after loading was performed under scanning electron microscopy. The small particles of 2 µm in size have exhibited strong interfacial bonding with the matrix. The particles of 5 µm in size have shown fractures and debonding interface. Large particles of above 20 µm in size have revealed severe fractures and particles pulled out. Behavior of the MMC was explained by relating the microstructures and displacement directions of the undeformed and deformed samples. Some understandings on the behaviour of the MMCs with different vol.% of Al2O3 due to biaxial stresses have been established.

Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 334-339
Author(s):  
Wanli Ma ◽  
Fenghe Tao ◽  
Changzhi Jia ◽  
Xiangdong Men

Abstract Samples of 1Cr12Ni3Mo2V-based composites with different TiC contents (The volume fraction of TiC were 0%, 10%, 20%, 30%, 40%) were prepared based on laser solid forming. Thermodynamic analysis was performed to estimate the possible chemical reactions. Phase analysis and microscopic topography analysis were characterized by optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Finally, the formation mechanism of microscopic appearance was analyzed. The results indicate that the TiC particles were successfully dispersed in the matrix. TiC particles mainly exist in two ways in the matrix. The large particles were not completely melted and the small particles were decomposed and then precipitated. Their shape was mainly cross, plum-shaped or dendritic distribution with different TiC contents.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2143
Author(s):  
Shaimaa I. Gad ◽  
Mohamed A. Attia ◽  
Mohamed A. Hassan ◽  
Ahmed G. El-Shafei

In this paper, an integrated numerical model is proposed to investigate the effects of particulate size and volume fraction on the deformation, damage, and failure behaviors of particulate-reinforced metal matrix composites (PRMMCs). In the framework of a random microstructure-based finite element modelling, the plastic deformation and ductile cracking of the matrix are, respectively, modelled using Johnson–Cook constitutive relation and Johnson–Cook ductile fracture model. The matrix-particle interface decohesion is simulated by employing the surface-based-cohesive zone method, while the particulate fracture is manipulated by the elastic–brittle cracking model, in which the damage evolution criterion depends on the fracture energy cracking criterion. A 2D nonlinear finite element model was developed using ABAQUS/Explicit commercial program for modelling and analyzing damage mechanisms of silicon carbide reinforced aluminum matrix composites. The predicted results have shown a good agreement with the experimental data in the forms of true stress–strain curves and failure shape. Unlike the existing models, the influence of the volume fraction and size of SiC particles on the deformation, damage mechanism, failure consequences, and stress–strain curve of A359/SiC particulate composites is investigated accounting for the different possible modes of failure simultaneously.


Author(s):  
Rajesh S. Kumar

Abstract Initial mechanical behavior of Ceramic Matrix Composites (CMCs) is linear until the proportional limit. This initial behavior is characterized by linear elastic properties, which are anisotropic due to the orientation and arrangement of fibers in the matrix. The linear elastic properties are needed during various phases of analysis and design of CMC components. CMCs are typically made with ceramic unidirectional or woven fiber preforms embedded in a ceramic matrix formed via various processing routes. The matrix processing of interest in this work is that formed via Polymer Impregnation and Pyrolysis (PIP). As this process involves pyrolysis process to convert a pre-ceramic polymer into ceramic, considerable volume shrinkage occurs in the material. This volume shrinkage leads to significant defects in the final material in the forms of porosity of various size, shape, and volume fraction. These defect structures can have a significant impact on the elastic and damage response of the material. In this paper, we develop a new micromechanics modeling framework to study the effects of processing-induced defects on linear elastic response of a PIP-derived CMC. A combination of analytical and computational micromechanics approaches is used to derive the overall elastic tensor of the CMC as a function of the underlying constituents and/or defect structures. It is shown that the volume fraction and aspect ratio of porosity at various length-scales plays an important role in accurate prediction of the elastic tensor. Specifically, it is shown that the through-thickness elastic tensor components cannot be predicted accurately using the micromechanics models unless the effects of defects are considered.


1994 ◽  
Vol 3 (2) ◽  
pp. 096369359400300
Author(s):  
Lun X. He ◽  
David K. Hsu ◽  
John P. Basart

In continuous fiber reinforced metal matrix composites, the volume fraction of voids in the matrix material is an important parameter for material property characterization. In analyzing a cross-sectional micrograph of such a composite, the presence of fiber images and voids occurring on the perimeter of fibers complicates the determination of void content. This paper describes image processing steps using mathematical morphology for the extraction of void fraction in a composite.


Author(s):  
Rajesh Kumar

Abstract Initial mechanical behavior of Ceramic Matrix Composites (CMCs) is linear until the proportional limit. This initial behavior is characterized by linear elastic properties, which are anisotropic due to the orientation and arrangement of fibers in the matrix. The linear elastic properties are needed during analysis and design of CMC components. CMCs are made with ceramic unidirectional or woven fiber preforms embedded in a ceramic matrix formed via various processing routes. The matrix processing of interest in this work is the Polymer Impregnation and Pyrolysis (PIP) process. As this process involves pyrolysis to convert a pre-ceramic polymer into ceramic, considerable volume shrinkage occurs in the material. This leads to significant defects in the form of porosity of various size, shape, and volume fraction. These defect structures can have a significant impact on the elastic and damage response of the material. In this paper, we develop a new micromechanics modeling framework to study the effects of processing-induced defects on linear elastic response of a PIP-derived CMC. A combination of analytical and computational micromechanics approaches is used to derive the overall elastic tensor of the CMC as a function of the underlying constituents and/or defect structures. It is shown that the volume fraction and aspect ratio of porosity at various length-scales plays an important role in accurate prediction of the elastic tensor. Specifically, it is shown that the through-thickness elastic tensor components cannot be predicted accurately using the micromechanics models unless the effects of defects are considered.


Author(s):  
M. A. Salem ◽  
I. G. El-Batanony ◽  
M. Ghanem ◽  
Mohamed Ibrahim Abd ElAal

Different Al-SiC metal matrix composites (MMCs) with a different matrix, reinforcement sizes, and volume fractions were fabricated using ball milling (BM) and powder metallurgy (PM) techniques. Al and Al-SiC composites with different volume fractions were milled for 120 h. Then, the Al and Al-SiC composites were pressed under 125 MPa and finally sintered at 450 °C. Moreover, microsize and combination between micro and nano sizes Al-SiC samples were prepared by the same way. The effect of the Al matrix, SiC reinforcement sizes and the SiC volume fraction on the microstructure evolution, physical and mechanical properties of the produced composites was investigated. The BM and powder metallurgy techniques followed by sintering produce fully dense Al-SiC composite samples with different matrix and reinforcement sizes. The SiC particle size was observed to have a higher effect on the thermal conductivity, electrical resistivity, and microhardness of the produced composites than that of the SiC volume fraction. The decreasing of the Al and SiC particle sizes and increasing of the SiC volume fraction deteriorate the physical properties. On the other hand, the microhardness was enhanced with the decreasing of the Al, SiC particle sizes and the increasing of the SiC volume fraction.


2015 ◽  
Vol 828-829 ◽  
pp. 172-178
Author(s):  
Zizo Gxowa ◽  
Sigqibo Templeton Camagu ◽  
Gonasagren Govender ◽  
Manuel Filipe Pereira

A powder metallurgical process was used to fabricate Metal Matrix Composites (MMCs). A 2124 aluminium alloy was reinforced with 5 and 10 vol.% of Al2O3(40-70nm) to form Metal Matrix Nano Composites (MMNCs) as well as 10 and 15 vol.% of SiC (1-10µm) to fabricate low micron MMCs. It was observed that the nano-sized Al2O3particles were evenly dispersed in the aluminium matrix while a lot of loose SiC particles settled on the grain boundaries in the low micron MMCs. The relative density of all the composites increased due to sintering, however full densification was not achieved. This result was attributed to the hindered motion of dislocations, grains and grain boundaries by reinforcing particles. The 2124-Al/10%-SiC composite was cold extruded and the extruded part fractured. A metallographic evaluation was carried out and it was deduced that the mode of failure was intergranular cracking. Hardness tests performed after sintering indicated that hardness increased with an increase in volume fraction of reinforcement in the matrix. Annealing of the extruded part resulted in a decrease in hardness.


2015 ◽  
Author(s):  
Risa Yoshizaki ◽  
Kim Tae Sung ◽  
Atsushi Hosoi ◽  
Hiroyuki Kawada

Carbon nanotubes (CNTs) have very high specific strength and stiffness. The excellent properties make it possible to enhance the mechanical properties of polymer matrix composites. However, it is difficult to use CNTs as the reinforcement of long fibers because of the limitation of CNT growth. In recent years, a method to spin yarns from CNT forests has developed. We have succeeded in manufacturing the unidirectional composites reinforced with the densified untwisted CNT yarns. The untwisted CNT yarns have been manufactured by drawing CNTs through a die from vertically aligned CNT arrays. In this study, the densified untwisted CNT yarns with a polymer treatment were fabricated. The tensile strength and the elastic modulus of the yarns were improved significantly by the treatment, and they were 1.9 GPa and 140 GPa, respectively. Moreover, the polymer treatment prevented the CNT yarns from swelling due to impregnation of the matrix resin. Finally, the high strength CNT yarn composites which have higher volume fraction than a conventional method were successfully fabricated.


1991 ◽  
Vol 6 (11) ◽  
pp. 2463-2473 ◽  
Author(s):  
C.C. Yang ◽  
T. Mura ◽  
S.P. Shah

The mechanism of fracture arrest in brittle-matrix composites with strong, long fibers is analyzed by using the inclusion method. The maximum stress contribution of the matrix in composites is discussed in this paper. A critical volume fraction of fibers fc is theoretically derived. If the volume fraction f is less than fc, then debonding between fibers and matrix occurs before the crack propagates through the whole section. If f is greater than fc, then no debonding occurs before the crack propagates through the whole section. The value of fc depends on the matrix and fiber properties and the bond character of the interface. To verify the analytical predictions, experiments on fiber reinforced cement composites subjected to uniaxial tension were conducted. The results of the theoretical predictions were also compared satisfactorily with other published experimental data.


Sign in / Sign up

Export Citation Format

Share Document