scholarly journals Enhancement the Osseo Integration Properties of Polymer for Human Body Implants

2020 ◽  
Vol 23 (4) ◽  
pp. 331-337
Author(s):  
Dhurgham Majid Rasheed ◽  
Dunya Abdulsahib Hamdi

In this research, polymer polymethyl methacrylate PMMA composite with nano ceramic Zr and HAp material were used to manufacture one part of the implant system (femoral ball head of hip implant). Three set of hybrid materials were fabricated and tested for this study; the first mixtures which contains 100% (PMMA), the second mixtures which contains (90% (PMMA) + 8% (Zr) + 2% (HAp)), and the third mixtures which contains (80% (PMMA) + 18% (Zr) + 2% (HAp)) were investigated. The mechanical properties for these mixtures increased with the increasing of nano ceramic concentration (Zr and HAp) composite material in the polymer compared to pure polymer PMMA sample. However, an increase in the concentration of Zr from 8% to 18% content cause a considerable decrease of the hardness where a drop of homogeneity in Zr- matrix PMMA contact occurred, V Hardness value are (68 ,80 and 70) Kg.mm for three mixture respectively. The wear test was in agreement with results of the hardness test. The weight loss of the above samples of the wear test were (0.041, 0.035 and 0.037) respectively. According to mechanical properties, the best sample contains (90% (PMMA) + 8% (Zr) + 2% (HAp)). The Scanning electron microscopy resolute showed the particles forming semi-continuous network along grain boundaries polymer for second sample mixtures containing (90% (PMMA) + 8% (Zr) + 2% (HAp)), provides a low atomic packing and high energy. This will make the grain boundaries more reactive and strengthen mechanical performance. The Optical microscopy, Scanning electron microscopy and Xray spectroscopy analysis for In vitro test using SBF shows the growth of HAp layer with an increase in concentration of Ca and P elements formed on the surface of the second sample. This display of good results is a proof of the biocompatibility of the polymer sample.

2009 ◽  
Vol 1187 ◽  
Author(s):  
Jakob R Eltzholtz ◽  
Marie Krogsgaard ◽  
Henrik Birkedal

AbstractBiology has evolved several strategies for attachment of sedentary animals. In the bivalves, byssi abound and the best known example being the protein-based byssus of the blue mussel and other Mytilidae. In contrast the bivalve Anomia sp. has a single calcified thread. The byssus is hierarchical in design and contains several different types of structures as revealed by scanning electron microscopy images. The mechanical properties of the byssus are probed by nanoindentation. It is found that the mineralized part of the byssus is very stiff with a reduced modulus of about 67 GPa and a hardness of ˜3.7 GPa. This corresponds to a modulus roughly 20% smaller than that of pure calcite and a hardness that is about 20% larger than pure calcite. The results reveal the importance of microstructure on mechanical performance.


2017 ◽  
Vol 264 ◽  
pp. 112-115
Author(s):  
Erfan Suryani Abdul Rashid ◽  
Wageeh Abdulhadi Yehye ◽  
Nurhidayatullaili Muhd Julkapli ◽  
Sharifah Bee O.A. Abdul Hamid

Nanocellulose (NCC) is incorporated into nitrile butadiene rubber (NBR) latex with the composition 0 to 5 phr using dipping method. Mechanical properties of NBR/NCC composites using tensile test was used to characterize their mechanical performance and the fracture surfaces post tensile test were studied. The tensile strength of NBR/NCC composites increase significantly with the addition of nanocellulose. This could be anticipated due to the presence of Van der Waals interaction between hydrophilic natures of nanocellulose with hydrophobic of NBR consequently limits the tearing propagation. The result was supported with the fracture surfaces morphology viewed under Fourier Emission Scanning Electron Microscopy (FESEM).


2018 ◽  
Vol 25 (3) ◽  
pp. 397-407 ◽  
Author(s):  
Jing Lin ◽  
Niraj Parikh ◽  
Naval Udgiri ◽  
Shaoxia Wang ◽  
Daniel F. Miller ◽  
...  

Purpose: To examine the effects of in situ laser fenestration and subsequent balloon dilation (noncompliant vs cutting) on the graft fabric of 4 aortic stent-graft models. Method: In an in vitro setup, the Zenith TX2, Talent, Endurant, and Anaconda aortic stent-grafts (all made of polyester graft material) were subjected to laser fenestration with a 2.3-mm-diameter probe at low and high energy in a physiologic saline solution followed by balloon dilation of the hole. For the first series of tests, 6-mm-diameter noncompliant balloons were used and replaced for the second series by 6-mm-diameter cutting balloons. Each procedure was performed 5 times (5 fenestrations per balloon type). The fenestrations were examined visually and with light and scanning electron microscopy. Results: Each fenestration demonstrated various degrees of fraying and/or tearing regardless of the device. The monofilament twill weave of the Talent endograft tore in the warp direction up to 7.09±0.46 mm at high energy compared with 2.41±0.26 mm for the Endurant multifilament device. The fenestrations of the 3 endografts with multifilament weave (Zenith, Anaconda, and Endurant) showed more fraying; fenestration areas in the multifilament Endurant were >10 mm2 at low and high energy. The fenestrations were free of melted fibers, but minor blackening of the filaments was observed in all devices. Overall, the cutting balloons resulted in worse tearing and damage. Of note, the edges of the dilated laser-formed fenestrations of the Talent and the Endurant grafts demonstrated evidence of additional shredded yarns. Conclusion: In situ fenestration does not cause any melting of the polyester; however, the observed structural damage to the fabric construction must be carefully considered. Cutting balloons caused various levels of tearing compared to the noncompliant balloons and cannot be recommended for use in this application. Rather, noncompliant balloons should be employed, but only with endografts constructed from multifilament yarns. The use of in situ fenestration must be restricted to urgent and emergent cases until long-term durability can be determined.


2013 ◽  
Vol 10 (81) ◽  
pp. 20120946 ◽  
Author(s):  
Amalie E. Donius ◽  
Marjorie A. Kiechel ◽  
Caroline L. Schauer ◽  
Ulrike G. K. Wegst

Few studies exist on the mechanical performance of crosslinked electrospun chitosan (CS) fibre mats. In this study, we show that the mat structure and mechanical performance depend on the different crosslinking agents genipin, epichlorohydrin (ECH), and hexamethylene-1,6-diaminocarboxysulphonate (HDACS), as well as the post-electrospinning heat and base activation treatments. The mat structure was imaged by field emission scanning electron microscopy and the mechanical performance was tested in tension. The elastic modulus, tensile strength, strain at failure and work to failure were found to range from 52 to 592 MPa, 2 to 30 MPa, 2 to 31 per cent and 0.041 to 3.26 MJ m −3 , respectively. In general, neat CS mats were found to be the stiffest and the strongest, though least ductile, while CS–ECH mats were the least stiff, weakest, but the most ductile, and CS–HDACS fibre mats exhibited intermediary mechanical properties. The mechanical performance of the mats is shown to reflect differences in the fibre diameter, number of fibre–fibre contacts formed within the mat, as well as varying intermolecular bonding and moisture content. The findings reported here complement the chemical properties of the mats, described in part I of this study.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
William J. Lamoreaux ◽  
David L. Smalley ◽  
Larry M. Baddour ◽  
Alfred P. Kraus

Infections associated with the use of intravascular devices have been documented and have been reported to be related to duration of catheter usage. Recently, Eaton et al. reported that Staphylococcus epidermidis may attach to silastic catheters used in continuous ambulatory peritoneal dialysis (CAPD) treatment. The following study presents findings using scanning electron microscopy (SEM) of S. epidermidis adherence to silastic catheters in an in vitro model. In addition, sections of polyvinyl chloride (PVC) dialysis bags were also evaluated by SEM.The S. epidermidis strain RP62A which had been obtained in a previous outbreak of coagulase-negative staphylococcal sepsis at local hospitals was used in these experiments. The strain produced surface slime on exposure to glucose, whereas a nonadherent variant RP62A-NA, which was also used in these studies, failed to produce slime. Strains were grown overnight on blood agar plates at 37°C, harvested from the surface and resuspended in sterile saline (0.85%), centrifuged (3,000 rpm for 10 minutes) and then washed twice in 0.1 M phosphate-buffered saline at pH 7.0. Organisms were resuspended at a concentration of ca. 106 CFU/ml in: a) sterile unused dianeal at 4.25% dextrose, b) sterile unused dianeal at 1.5% dextrose, c) sterile used dialysate previously containing 4.25% dextrose taken from a CAPD patient, and d) sterile used dialysate previously containing 1.5% dextrose taken from a CAPD patient.


1984 ◽  
Vol 52 (02) ◽  
pp. 102-104 ◽  
Author(s):  
L J Nicholson ◽  
J M F Clarke ◽  
R M Pittilo ◽  
S J Machin ◽  
N Woolf

SummaryA technique for harvesting mesothelial cells is described. This entails collagenase digestion of omentum after which the cells can be cultured. The technique has been developed using the rat, but has also been successfully applied to human tissue. Cultured rat mesothelial cells obtained in this way have been examined by scanning electron microscopy. Rat mesothelial cells grown on plastic film have been exposed to blood in an in vitro system using a Baumgartner chamber and have been demonstrated to support blood flow. No adhering platelets were observed on the mesothelial cell surface. Fibroblasts similarily exposed to blood as a control were washed off the plastic.


2017 ◽  
Vol 68 (6) ◽  
pp. 1188-1192
Author(s):  
Daniela Avram ◽  
Nicolae Angelescu ◽  
Dan Nicolae Ungureanu ◽  
Ionica Ionita ◽  
Iulian Bancuta ◽  
...  

The study in vitro of the glass powders bioactivity was performed by soaking them in simulated body fluid for 3 to 21 days at a temperature of 37�C and pH = 7.20. The synthesis de novo of hydroxyapatite, post soaking was confirmed by Fourier Transform Infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study of the antimicrobial activity was performed by microbiological examination on two strains of pathogenic bacteria involved in postoperative nosocomial infections.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


Sign in / Sign up

Export Citation Format

Share Document