scholarly journals Technogenic factors of impact on productive sediments of hydrocarbon deposits and their relation to potential deformation of the Earth’s surface

Author(s):  
A.I. Nikonov

The article presents the results of the studies of the assessment of subsidence of the Earth’s surface above hydrocarbon fields, obtained by mathematical modeling and on the basis of field observations. The purpose of these studies is the substantiation of changes in the initial physical-mechanical and strength properties of productive deposits in the process of exposure to them by various methods of development, comparison of estimates of subsidence of the Earth’s surface obtained by calculation and geodetic methods, taking into account the heterogeneity of the geological structure of the fields and the technogenic factors of impact. It is shown that the value of the calculated surface subsidence over the field, obtained on single data of the coefficient of pore compressibility of rocks and without taking into account the impact of the applied methods of development, does not allow an objective assessment of this process over the field area. The conclusion is made about the necessity of repeated profile leveling and gravimetric observations for a real assessment of the subsidence process of the Earth’s surface, which allows to control the industrial and environmental safety of natural and natural-technogenic objects in the field.

2021 ◽  
Vol 2021 (2) ◽  
pp. 75-88
Author(s):  
Petro ZHUK ◽  

The results of elaborations of available theoretical-analytical materials on measuring the quality of life are generalized, their orientation mainly on the assessment of the quality of life at the macro level for international comparisons is revealed. Methodical methods for assessing environmental safety as a component of quality of life at the level of administrative subregions of neighboring countries are substantiated and proposed: subjective assessment based on sociological research using questionnaires and objective assessment with a choice of representative, comparative, reliable assessment indicators, substantiation of their standards and calculations of environmental safety indices. The results are given of approbation of the proposed methods with coverage of subjective and obtained on the basis of quantitative indicators adapted to the system of official statistics of Ukraine and Poland objective assessments of the ecological component of quality of life in the studied cross-border subregions: Zhovkva, Sokal, Yavoriv districts of Lviv Oblast of Ukraine and Jaros?aw, Przemy?l, Lubacz?w Counties of the SubcarpathianVoivodeship of Poland. Significant disparities are identified not in favor of domestic subregions in the levels of environmental safety according to the results of objective assessment, which to some extent is smoothed in subjective assessment due to its dependence on the specific values and guidelines and environmental awareness of respondents. Conclusions are made on the complementarity of the results of subjective and objective environmental safety assessment, high value of the importance given by respondents to environmental safety as a component of quality of life, the impact of environmental safety asymmetry on the results of its subjective assessment, in particular, the priority of protection and preservation of certain components natural environment aimed at solving these problems.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 643-651 ◽  
Author(s):  
ROBERT J. OGLESBY ◽  
HUMPHREY J. MOYNIHAN ◽  
RICARDO B. SANTOS ◽  
ASHOK GHOSH ◽  
PETER W. HART

The impact of commercially prepared, fully bleached pulp viscosity variation on handsheet physical properties was evaluated at different levels of pulp refining. Hardwood pulps from the same brownstock species mix, cooking parameters, and kappa numbers were processed through two different commercial bleach plants: one with a D0(EP)D1D2 sequence and the second with an OD0(EOP)D1 sequence. Additionally, a commercial softwood (predominately Scotts pine) brownstock pulp bleached by an OD0(EP)D1D2 sequence was employed in this study. Pulps with viscosities ranging from 14 to 21 mPa∙s were refined in a Valley beater to two freeness levels, and the associated handsheet physical properties were measured in this study. Over the pulp viscosity range of 14 to 21 mPa∙s, no clear correlation was found to exist between pulp viscosity and related paper physical properties. Finally, a series of laboratory prepared bleached pulps were purposely prepared under non-ideal conditions to reduce their final viscosities to lower values. Handsheets made from these pulps were tested in their unbeaten condition for physical strength properties. Significant and rapid strength loss occurred when the measured pulp viscosity dropped below 12 mPa∙s; overall strength properties showed no correlation to viscosity above the critical 12 mPa∙s value.


Author(s):  
L.Z. Khalishkhova ◽  
◽  
A. Kh. Temrokova ◽  
I.R. Guchapsheva ◽  
K.A. Bogаtyreva ◽  
...  

Ensuring the sustainable development of agroecosystems requires research into the justification of the impact of environmental factors on the formation of territorial agroecosystems and identifies ways to take them into account in order to justify management decisions and ensure environmental safety. The main goal of the research within the article is to identify the most significant environmental factors in predicting the formation of agroecosystems. Provisions are devoted to the study of the laws governing the functioning of agroecosystems in order to increase their stability. The methods of comparative analysis, generalization, abstraction, logical analysis are applied. A number of provisions are formulated regarding ways to account for the influence of factors on the formation of key elements of agroecosystems.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1103
Author(s):  
Sara Sarraj ◽  
Małgorzata Szymiczek ◽  
Tomasz Machoczek ◽  
Maciej Mrówka

Eco-friendly composites are proposed to substitute commonly available polymers. Currently, wood–plastic composites and natural fiber-reinforced composites are gaining growing recognition in the industry, being mostly on the thermoplastic matrix. However, little data are available about the possibility of producing biocomposites on a silicone matrix. This study focused on assessing selected organic fillers’ impact (ground coffee waste (GCW), walnut shell (WS), brewers’ spent grains (BSG), pistachio shell (PS), and chestnut (CH)) on the physicochemical and mechanical properties of silicone-based materials. Density, hardness, rebound resilience, and static tensile strength of the obtained composites were tested, as well as the effect of accelerated aging under artificial seawater conditions. The results revealed changes in the material’s properties (minimal density changes, hardness variation, overall decreasing resilience, and decreased tensile strength properties). The aging test revealed certain bioactivities of the obtained composites. The degree of material degradation was assessed on the basis of the strength characteristics and visual observation. The investigation carried out indicated the impact of the filler’s type, chemical composition, and grain size on the obtained materials’ properties and shed light on the possibility of acquiring ecological silicone-based materials.


Author(s):  
Jintao Ma ◽  
Qiuguang Hu ◽  
Weiteng Shen ◽  
Xinyi Wei

To cope with climate change and achieve sustainable development, low-carbon city pilot policies have been implemented. An objective assessment of the performance of these policies facilitates not only the implementation of relevant work in pilot areas, but also the further promotion of these policies. This study uses A-share listed enterprises from 2005 to 2019 and creates a multi-period difference-in-differences model to explore the impact of low-carbon city pilot policies on corporate green technology innovation from multiple dimensions. Results show that (1) low-carbon city pilot policies stimulates the green technological innovation of enterprises as manifested in their application of green invention patents; (2) the introduction of pilot policies is highly conducive to green technological innovation in eastern cities and enterprises in high-carbon emission industries; and (3) tax incentives and government subsidies are important fiscal and taxation tools that play the role of pilot policies in low-carbon cities. By alleviating corporate financing constraints, these policies effectively promote the green technological innovation of enterprises. This study expands the research on the performance of low-carbon city pilot policies and provides data support for a follow-up implementation and promotion of policies from the micro perspective at the enterprise level.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3430
Author(s):  
Grzegorz Golański ◽  
Jacek Słania ◽  
Marek Sroka ◽  
Paweł Wieczorek ◽  
Michał Urzynicok ◽  
...  

In addition to good high-temperature creep resistance and adequate heat resistance, steels for the power industry must have, among other things, good weldability. Weldability of such steels is one of the criteria determining whether or not the material is suitable for applications in the power industry. Therefore, when materials such as martensitic steel Thor 115 (T115) are introduced into the modern power industry, the quality and properties of welded joints must be assessed. The paper presents the results of metallographic and mechanical investigations of T115 martensitic steel welded joints. The analysis was carried out on joints welded with two filler metals: WCrMo91 (No. 1) and EPRI P87 (No. 2). The scope of the investigations included: microstructural investigations carried out using optical, scanning and transmission electron microscopy and mechanical testing, i.e., Vickers microhardness and hardness measurement, static tensile test and impact test. The macro- and microstructural investigations revealed correct structure of the weld, without welding imperfections. The microstructural investigations of joint No. 1 revealed a typical structure of this type of joint, i.e., the martensitic structure with numerous precipitates, while in joint No. 2, the so-called Nernst’s layers and δ-ferrite patches were observed in the weld fusion zone as well as the heat affected zone (HAZ). The mechanical properties of the test joints met the requirements for the base material. A slight influence of the δ-ferrite patch on the strength properties of joint No. 2 was observed, and its negative effect on the impact energy of HAZ was visible.


Author(s):  
Yu.R. Vladov ◽  
◽  
M.Yu. Nesterenko ◽  
Yu.M. Nesterenko ◽  
A.Yu. Vladova ◽  
...  

The predominant area of application of the developed methodology is the construction of the distribution of the geodynamic state of the developed hydrocarbon fields in oil and gas basin, and the identification of the corresponding distribution law. A number of the hydrocarbon deposits in terms of geological conditions of occurrence, structure and other parameters are geodynamically hazardous during their development. The Federal Law «On Subsurface Resources» (Article 24) requires conducting a complex of geological, surveying, and other observations sufficient for ensuring a normal technological cycle of work, and the prediction of hazardous situations. The developed methodology based on the construction of aggregated additive models for each reservoir and field is presented. It includes four sequential stages (24 operations): first — prepare geodynamic data; second — determine the geodynamic state of productive strata; third — find the geodynamic state of the developed deposits subsoil; fourth — build the distribution of the bowels geodynamic state of these fields for the entire oil and gas basin and identify the relevant distribution law. Oil and gas basin in the west of the Orenburg Region (Volga — Ural and Caspian oil and gas provinces) is considered as an example of implementation. Unique data of twenty geodynamic parameters of 320 productive strata (56 fields) were used. It is revealed that in accordance with the Pearson criterion, the theoretical data with a high confidence probability (95 %) correspond to the law of normal distribution. Developed methodology has significant technical and economic advantages, since it allows to identify the geodynamic state of productive strata and subsoil of the fields being developed, to identify hazardous geodynamic processes and to choose rational modes for the development of hydrocarbon deposits.


Author(s):  
R. K. Vagapov

The impact of hydrogen sulfide raw materials on steel equipment and pipelines is associated not only with corrosion processes, but also with the hydrogenation of used carbon and low-alloy steels. This can lead to the loss of their strength properties and the subsequent destruction of equipment operated under conditions of increased operating pressures. Such corrosive-mechanical effects associated with the penetration of hydrogen into steel are the most dangerous from the point of view of the safety and reliability of the operation of facilities for the production of hydrocarbon fluids. The effect of H2S on the main types of structural steels was investigated according to the results of autoclave tests. The formation of blistering (blistering) and cracks on the surface of steels due to the effect of hydrogen on the steel was recorded. A study of the phase composition of corrosion products and their possible effect on the processes of corrosion and hydrogenation of steel has been carried out.


Sign in / Sign up

Export Citation Format

Share Document