Profound Understanding of Various Annealing Scheme Effects on the Electrical Characteristics of Silicon Carbide based Devices

Author(s):  
Ragavi R
2001 ◽  
Vol 175-176 ◽  
pp. 505-511 ◽  
Author(s):  
G Katulka ◽  
K Roe ◽  
J Kolodzey ◽  
G Eldridge ◽  
R.C Clarke ◽  
...  

2011 ◽  
Vol 276 ◽  
pp. 21-25
Author(s):  
S.O. Gordienko ◽  
A. Nazarov ◽  
A.V. Rusavsky ◽  
A.V. Vasin ◽  
N. Rymarenko ◽  
...  

This paper presents an analysis of the electrical characteristics of the amorphous silicon carbide films deposited on the SiO2/Si substrate. Aspects of RF plasma treatment on electrical and structural characteristics of a-SiC film are discussed. It is demonstrated that the dominant mechanism of current transport in the a-SiC thin film is determined by variable-range hopping conductivity at the Fermi level. Studies of the a-SiC film at temperatures from 300 K to 600 K also indicate that silicon carbide is a perspective material for fabrication of temperature sensor.


1998 ◽  
Vol 27 (4) ◽  
pp. 296-299 ◽  
Author(s):  
J. P. Henning ◽  
K. J. Schoen ◽  
M. R. Melloch ◽  
J. M. Woodall ◽  
J. A. Cooper

2015 ◽  
Vol 821-823 ◽  
pp. 814-817 ◽  
Author(s):  
Thibaut Chailloux ◽  
Cyril Calvez ◽  
Dominique Tournier ◽  
Dominique Planson

The aim of this study consists in comparing effects of temperature on various Silicon Carbide power devices. Static and dynamic electrical characteristics have been measured for temperatures from 80K to 525K.


1996 ◽  
Vol 424 ◽  
Author(s):  
G. Lavareda ◽  
E. Fortunato ◽  
C. Nunes Carvalho ◽  
R. Martins

AbstractIn this paper we present a study on the electrical characteristics (conductivity, σ and relative dielectric constant, εr,.) of amorphous silicon nitride (a-SixN1-x) and carbide (a-SixC1-x) films deposited by PECVD, used as dielectric materials in TFT devices, aiming to select the most adequate alloy that lead to improve device performances. Besides that, double stack a-SixN1-x/a-SixC1-x structures were developed and applied as dielectric layers on TFTs, whose performances show to be superior to those ones using single silicon nitride or silicon carbide as dielectric.


Author(s):  
П.А. Иванов ◽  
А.С. Потапов ◽  
М.Ф. Кудояров ◽  
М.А. Козловский ◽  
Т.П. Самсонова

AbstractIrradiation of crystalline n -type silicon carbide ( n -SiC) with high-energy (53-MeV) argon ions was used to create near-surface semi-insulating ( i -SiC) layers. The influence of subsequent heat treatment on the electrical characteristics of i -SiC layers has been studied. The most high-ohmic ion-irradiated i -SiC layers with room-temperature resistivity of no less than 1.6 × 10^13 Ω cm were obtained upon the heat treatment at 600°C, whereas the resistivity of such layers heat-treated at 230°C was about 5 × 10^7 Ω cm.


1996 ◽  
Vol 423 ◽  
Author(s):  
J. M. Delucca ◽  
S. E. Mohney

AbstractMetallurgical reactions between contacts and SiC can alter the electrical characteristics of the contacts, either beneficially or detrimentally. Simultaneously, consumption of the underlying SiC epilayer takes place. During prolonged operation at elevated temperature, contacts that are not in thermodynamic equilibrium with SiC may continue to react with it. For this reason, interest in thermally stable carbide and silicide contacts to SiC has been growing. To select appropriate carbides or silicides for further study, however, knowledge of the transition metal-silicon-carbon (TM-Si-C) phase equilibria is required. A significant body of literature on the TM-Si-C systems exists and should therefore be examined in the context of electronic applications. In this paper, phase equilibria for representative TM-Si-C systems are presented, trends in these systems with respect to temperature and position of the metal in the periodic table are discussed, and attractive carbide and silicide contacts and processing schemes for thermally stable contacts are highlighted.


Sign in / Sign up

Export Citation Format

Share Document