An Overview of Numerical Studies on Flexural Performance of Built-Up Cold-Formed Steel Beam (CFSB) Filled with Concrete

Cold-formed steel (CFS) built-up sections have been recently introduced with other materials such as concrete connected by means of bolting and screws to avoid the problems of the CFS sections buckling. The flexural analysis of CFS-concrete composite beam is more complicated in terms of design and failure mode. Therefore, this paper attempts a short review on the numerical studies of CFS section with and without concrete under the flexural load. In particular, the CFS buckling failure modes were critically reviewed. Furthermore, the important considerations such as material properties definition and interactions during the numerical simulation were discussed. The review presented in this paper highlights considerable potential on how the nonlinearities of the concrete material, CFS-concrete interaction and connection types affect the level of simulation accuracy in predicting the flexural behavior of the composite beam. Moreover, the connections type, the nonlinear simulation methods and strategies and findings for the CFS-concrete flexural behavior were critically reviewed. The directions of the future research were provided through the concluded remarks and recommendations in achieving a higher accuracy of simulation results as well as more effective design philosophy in future to promote the utilization of CFS composite beam in construction industry.

2020 ◽  
Vol 10 (11) ◽  
pp. 3855 ◽  
Author(s):  
Ehsan Taheri ◽  
Ahmad Firouzianhaji ◽  
Peyman Mehrabi ◽  
Bahador Vosough Hosseini ◽  
Bijan Samali

Perforated cold-formed steel (CFS) beams subjected to different bending scenarios should be able to deal with different buckling modes. There is almost no simple way to address this significant concern. This paper investigates the bending capacity and flexural behavior of a novel-designed system using bolt and nut reinforcing system through both experimental and numerical approaches. For the experiential program, a total of eighteen specimens of three types were manufactured: a non-reinforced section, and two sections reinforced along the upright length at 200 mm and 300 mm pitches. Then, monotonic loading was applied to both the minor and major axes of the specimens. The finite element models were also generated and proved the accuracy of the test results. Using the proposed reinforcing system the flexural capacity of the upright sections was improved around either the major axis or minor axis. The 200 mm reinforcement type provided the best performance of the three types. The proposed reinforcing pattern enhanced flexural behavior and constrained irregular buckling and deformation. Thus, the proposed reinforcements can be a very useful and cost-effective method for strengthening all open CFS sections under flexural loading, considering the trade-off between flexural performance and the cost of using the method.


2012 ◽  
Vol 166-169 ◽  
pp. 1736-1739
Author(s):  
Yu Tian Wang ◽  
Xiu Li Du ◽  
Fu Xiang Jiang ◽  
Wei Zhang

Experiments on flexural behavior of strengthened pre-damaged reinforced concrete beams with CFRP and those exposed to seawater for different time have been carried out. By comparison, the rule of seawater effecting on failure modes of beams, fissure condition, strain development and flexural capacity, and so on have been studied. The results show that reinforcement treatment on the mechanical damaged reinforced concrete beams with bonding CFRP can effectively improve their flexural capacity and stiffness, and constrain the development of cracks. With the extension of time under seawater environment, although performance of pre-damaged beam strengthened with CFRP is influenced significantly, the strengthening effect is still more reliable.


Author(s):  
Achmad Abraham S. ARMO ◽  
Anis SAGGAFF ◽  
Mahmood Bin Md. TAHIR

New methods to provide shear strength on the cold-formed steel (CFS) lipped c-channel section composite beam encased with concrete partially is proposed using rebars embedded in concrete. The development of research on the CFS composite beams technology with partial encasement shows that the section of the composite beam encased with concrete partially can provide ductile flexural action for the composite beam. The application of profiled metal decking slabs in the composite beam is becoming increasingly popular compared to solid slabs. However, it has a detrimental effect on the structural behavior of a composite beam. This research is aimed primarily at presenting the behavior of the rebar shear connector to evaluated ductility, shear capacity, and modes of failure. Two samples using a rebar 12 mm in diameter in the profiled metal decking slabs and solid slabs were tested using the standard push-out test till failure. For the composite beam design, the proposed shear connector embedded in the slab concrete and the CFS encased with concrete partially used the test results’ shear capacity, greater than the values as proposed by section 3.1, BS 5950. Due to rebars shear-off, the solid slab specimen failed with the highest load of 489.6 kN while the Profiled Metal Decking Slab specimen failed due to the formation of the cracks on the PMDS at 421.1 KN ultimate loading. HIGHLIGHTS A new system of the rebar shear connectors for the Cold-Formed Steel (CFS) composite beam partially encased in concrete have been developed The main purpose of push-out testing is to investigate the shear capacity and ductility of the proposed shear connector failure modes and load-slip connections The shear capacity of the test results is greater than the values as indicated by BS 5950 Part 3.1 The proposed rebars as a shear connector for partly embedded CFS can be used in the construction GRAPHICAL ABSTRACT


2010 ◽  
Vol 113-116 ◽  
pp. 989-993 ◽  
Author(s):  
Huang Ying Shen ◽  
Yu Shun Li ◽  
Zhen Wen Zhang ◽  
Tian Yuan Jiang ◽  
Jun Zhe Liu

The objective of this research was to develop a new composite material/system in structural civil engineering. To use of mechanical properties of bamboo-based panel and cold-formed steel, this study composite two kind of materials above-mentioned together utilizing structural adhesives. The research developed various of bamboo/steel composite members, such as composite slabs, composite walls, composite beams and composite columns. And the paper emphasized mechanical performance of bamboo/steel composite slabs and composite beams. Experimental studies on flexural behavior of 6 composite slabs and 9 composite beams were carried out and the failure process, failure modes and failure mechanism were investigated. Experiment results indicates that the bamboo plywood and cold-formed steel can form an excellent composite cross-section; Load vs. mid-span deflection curves of composite slabs and composite beams show linear on serviceability limit state. The maximum ultimate strength of composite slabs and beams have reached 30.0 kN•m and 36.13 kN•m respectively. The study shows that bamboo-steel composite members have good prospects in building structures of China.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Balaji Shanmugam ◽  
Manikandan Palanisamy ◽  
Paul O. Awoyera ◽  
Senthilnathan Chinnasamy ◽  
Mahalakshmi Subramaniam

This paper deals with a study conducted on flexural behavior of cold-formed steel built-up I-beams with hollow tubular flange sections. There were two types of test sections, namely, built-up sections that were assembled with either stiffened or unstiffened channels coupling back-to-back at the web and a hollow tubular rectangular flange at the top and bottom of the web to form built-up I-beam. The flexural behavior along with the strength and failure modes of the built-up sections was examined using the four-point loading system. Nonlinear finite element (FE) models were formulated and validated with the experimental test results. It was observed that the developed FE models had precisely predicted the behavior of built-up I-beams. Further, the verified FE models were used to conduct a detailed parametric study on cold-formed steel built-up beam sections with respect to thickness, depth, and yield stress of the material. The flexural strength of the beams was designed using the direct strength method as specified in American Iron and Steel Institute (AISI) for the design of cold-formed steel structural members and was compared with the experimental results and the failure loads predicted from FE models. Since the results were not conservative, a new customized design equation had been mooted and delineated in the study for determining the flexural strength of cold-formed steel built-up beams with hollow tubular flange sections.


Author(s):  
Surajit Bag

The application of multivariate techniques is mainly to expand the researchers explanatory ability and statistical efficiency. The first generation analytical techniques share a common limitation i.e. each technique can examine only a single relationship at a time. Structural Equation Modeling, an extension of several multivariate techniques is the technique popularly used today can examine a series of dependence relationships simultaneously. The purpose of this study is to provide a short review on Structural Equation Modeling (SEM) being used in social sciences research. A comprehensive literature review of article appearing in top journals is conducted in order to identify how often SEM theory is used. Also the key SEM steps have been provided offering potential researchers with a theoretical supported systematic approach that simplify the multiple options with performing SEM.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 586 ◽  
Author(s):  
Hamilton Roschel ◽  
Bruno Gualano ◽  
Sergej M. Ostojic ◽  
Eric S. Rawson

There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.


2011 ◽  
Vol 201-203 ◽  
pp. 2900-2903 ◽  
Author(s):  
Chui Huon Tina Ting ◽  
Hieng Ho Lau

Built-up sections are used to resist load induced in a structure when a single section is not sufficient to carry the design load for example roof trusses. In current North American Specification, the provision has been substantially taken from research in hot-rolled built-up members connected with bolts or welds [1]. The aim of this paper is to investigate on built-up back-to-back channels stub columns experimentally and theoretically using Effective Width Method and Direct Strength Method. Compression test was performed on 5 lipped channel and 5 back-to-back channels stub columns fabricated from cold-formed steel sheets of 1.2mm thicknesses. The test results indicated that local buckling is the dominant failure modes of stub columns. Therefore, Effective Width Method predicts the capacity of stub columns compared to Direct Strength Method. When compared to the average test results, results based on EWM are 5% higher while results based on DSM are 12% higher for stub column.


1959 ◽  
Vol 37 (9) ◽  
pp. 1017-1035 ◽  
Author(s):  
John M. Bowsher

The study of the propagation of "plastic" waves in solids has reached a stage where it is necessary to consider which direction future research should take. In the past 90 or so years many experiments, mostly designed to elucidate certain points of engineering significance, and a few attempts at a theoretical study have cast some light on the subject and revealed it as one of formidable difficulty.Nearly all the experiments have of necessity relied on rather dubious theories for their interpretation, and part of the present paper will be devoted to a description of an apparatus which gives results capable of being interpreted with a very minimum of theory. The remainder of the paper is devoted to a short review of past work with particular emphasis on basic phenomena and to a brief discussion on the most pressing problems still remaining. The experiments described in the present paper bring to light a factor in the propagation of "plastic" waves that seems to have been overlooked in previous work.


Sign in / Sign up

Export Citation Format

Share Document