scholarly journals Base isolation design and analysis for the 7-story apartment building “Stepanakert-sections-4-5” with R/C monolithic load-bearing walls and asymmetric plan

2020 ◽  
Vol 5 (2) ◽  
pp. 047-056
Author(s):  
Mikayel G. Melkumyan

In recent years seismic isolation technologies in Armenia were extensively applied in construction of multi-story residential, medical, hotel, airport, and business center complexes with parking floors and with floors envisaged for offices, shopping centers, fitness clubs, etc. To date there are 55 seismic isolated buildings in the country newly constructed or retrofitted by base or roof isolation systems. Of this number of buildings 48 were erected thanks to the works of the author of this paper and in nowadays Armenia is well known as a country where seismic (base and roof) isolation systems are widely implemented in civil construction. The number of seismically isolated buildings per capita in Armenia is one of the highest in the world – second after Japan. The paper given below emphasizes achievements also in local manufacturing/testing of seismic isolation laminated rubber-steel bearings (SILRSBs). Several remarkable projects on construction of base isolated buildings are briefly mentioned in the paper to demonstrate the experience accumulated in Armenia. Based on the gained experience further developments take place and unique base isolation structural concepts and technologies created by the author are applied more and more in construction of new buildings. In this paper base isolation design and analysis by the Armenian Seismic Code for the 7-story apartment building to be constructed in Stepanakert is described. This will be a first application of base isolation technology to a building the bearing system of which consists of reinforced concrete (R/C) monolithic load-bearing walls and building has an asymmetric plan. It is stated that suggested seismic isolation strategy will reduce the cost of construction of the given building on about 35% in comparison with the cost of conventional construction. Obtained results indicate the high effectiveness of the proposed structural concept of isolation system and the need for further improvement of Seismic Code provisions regarding the values of the reduction factors.

2002 ◽  
Vol 18 (4) ◽  
pp. 761-776 ◽  
Author(s):  
Wendy Taniwangsa

A base-isolated demonstration building (BIDB) was built in Indonesia as part of an ongoing effort by the United Nations Industrial Development Organization to promote the use of base isolation technology for common structures in earthquake-prone developing countries. The superstructure of the demonstration building is a four-story reinforced concrete frame with masonry infill walls, designed in accordance with the Indonesian Seismic Code. A specially developed isolation system for this project consisted of 16 high-damping natural rubber bearings, which were connected to the columns and foundation using recessed-type connections at the ground level. The seismic isolation provisions from the 1994 Uniform Building Code were adapted to complement the Indonesian Seismic Code requirements for this project, and site-specific spectra were developed and used for the design of the isolation system. This paper discusses the design considerations for the base-isolated demonstration building, the design and testing of the bearings and the cost-effectiveness of the isolation system. The seismic performance of the base-isolated building is discussed in the companion paper. It is expected that this newly developed isolation system, designed specifically for low-axial pressure applications, can be adopted for the earthquake protection of a variety of smaller public buildings—such as housing, schools, and hospitals—in developing countries.


Author(s):  
C. S. Tsai ◽  
H. C. Su ◽  
W. C. Liao ◽  
Yan-Ming Wang

Inhabitable land has been decreasing due to the continual rise in sea levels caused by global warming. In response to this climate change, we need to consider looking for living spaces on water surfaces as well as building earthquake-resistant structures, particularly in flood and earthquake prone areas. This paper presents an experimental study on a new base isolation system in mitigating the response of a floating house that is located in a port. Experimental results show that the seismic response of the floating house was considerably reduced by the proposed isolation system with a proper displacement limit.


2021 ◽  
Vol 879 ◽  
pp. 189-201
Author(s):  
M.A. Amir ◽  
N.H. Hamid

Recently, there are a lot of technological developments in the earthquake engineering field to reduce structural damage and one of them is a base isolation system. The base isolation system is one of the best technologies for the safety of human beings and properties under earthquake excitations. The aim of this paper is to review previous research works on simulation of base isolation systems for RC buildings and their efficiency in the safety of these buildings. Base isolation decouples superstructure from substructure to avoid transmission of seismic energy to the superstructure of RC buildings. The most effective way to assess the base isolation system for RC building under different earthquake excitations is by conducting experiment work that consumes more time and money. Many researchers had studied the behavior of base isolation system for structure through modeling the behavior of the base isolation in which base isolator is modeled through numerical models and validated through experimental works. Previous researches on the modeling of base isolation systems of structures had shown similar outcomes as the experimental work. These studies indicate that base isolation is an effective technology in immunization of structures against earthquakes.


2012 ◽  
Vol 446-449 ◽  
pp. 378-381
Author(s):  
Jian Min Jin ◽  
Ping Tan ◽  
Fu Lin Zhou ◽  
Yu Hong Ma ◽  
Chao Yong Shen

Mid-story isolation structure is developing from base isolation structures. As a complex structural system, the work mechanism of base isolation structure is not entirely appropriate for mid-story isolation structure, and the prolonging of structural natural period may not be able to decrease the seismic response of substructure and superstructure simultaneously. In this paper, for a four-story steel frame model, whose prototype first natural period is about 1s without seismic isolation design, the seismic responses and isolation effectiveness of mid-story isolation system with lead rubber bearing are studied experimentally by changing the location of isolation layer. Respectively, the locations of isolation layer are set at bottom of the first story, top of the first story, top of the second story and top of the third story. The results show that mid-story isolation can reduce seismic response in general, and substructure acceleration may be amplified.


Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


2017 ◽  
Vol 29 (7) ◽  
pp. 1315-1332 ◽  
Author(s):  
Mohtasham Mohebbi ◽  
Hamed Dadkhah ◽  
Hamed Rasouli Dabbagh

This article presents a new approach for designing effective smart base isolation systems composed of a low-damping linear base isolation and a semi-active magneto-rheological damper. The method is based on transforming the design procedure of the hybrid base isolation system into a constrained optimization problem. The magneto-rheological damper command voltages have been determined using H2/linear quadratic Gaussian and clipped-optimal control algorithms. Through a sensitivity analysis to identify the effective design parameters, base isolation and control algorithm parameters have been taken as design variables and optimally determined using genetic algorithm. To restrict increases in floor accelerations, the objective function of the optimization problem has been defined as minimizing the maximum base drift while putting specific constraint on the acceleration response. For illustration, the proposed method has been applied to design a semi-active hybrid isolation system for a four-story shear building under earthquake excitation. The results of numerical simulations show the effectiveness, simplicity, and capability of the proposed method. Furthermore, it has been shown that using the proposed method, the acceleration of the isolated structure can also be incorporated into design process and practically controlled with a slight sacrifice of control effectiveness in reducing the base drift.


Author(s):  
Mitsuru Kageyama ◽  
Yoshihiko Hino ◽  
Satoshi Moro

In Japan, the development of the next generation NPP has been conducted in recent years. In the equipment/piping design of the plant, seismic condition has been required much more mitigate than before. So, the three-dimensional (abbreviation to 3D) seismic isolation system development has also been conducted since 2000. The superlative 3D base isolation system for the entire building was proposed. The system is composed of cable reinforced air springs, rocking arresters and viscous dampers. Dimensions of the air spring applied to the actual power plant are 8 meters in the outer-diameter and 3.5 meters in height. The allowable half strokes are 1.0 meters in horizontal and 0.5 meters in vertical respectively. The maximum supporting weight for a single device is 70 MN. The inner design air pressure is about 1.8MPa. This air spring has a distinguishing feature, which realizes 3D base isolation with a single device, whose natural periods are about 4 seconds in horizontal and about 3 seconds in vertical. In order to verify the 3D performance of this system, several feasibility tests were conducted. Firstly, 3D shaking table tests were conducted. The test specimen is scaled 1/4 of the actual device. The outer diameter and inner air pressure of air spring is 2 meters and 0.164 MPa. Next, a pressure resistant test for the sub cable, textile sheet and rubber sheet, which composed air spring, were conducted as a full scale model test. Then, air permeation test for the rubber sheet was also conducted. As a result, the proposed system was verified that it could be applied to the actual nuclear power plants.


2011 ◽  
Vol 255-260 ◽  
pp. 1225-1229
Author(s):  
Huang Sheng Sun ◽  
Li Nuo Cheng ◽  
Shi Hai Chen

In order to mitigate the seismic response of twin-tower structure linked by a steel truss platform bridge, as well as to reduce temperature force in the steel truss, eight groups of combined isolation system, each consisting of one pot-type bearing and four rubber bearings, were designed to connect the upper platform bridge to the lower supporting reinforced concrete towers. The features and working principles of the high-position isolation system were described. Then the seismic responses, including displacement, story drift and floor acceleration, of the structure with the isolation systems were calculated and compared with those of the structure with hinge joints in lieu of isolation. It is found that both the structural seismic responses and the temperature forces in the large-span mega-truss structure can be reduced by the high-position isolation system.


Author(s):  
R. Lo Frano ◽  
G. Forasassi

Nuclear power plant (NPP) design is strictly dependent on the seismic hazards and safety aspects related to the external events of the site. Passive vibration isolators are the most simple and reliable means to protect sensitive equipment from environmental shocks and vibrations. This paper concerns the methodological approach to treat isolation applied to a near term deployment reactor and its internals structures in order to attain a suitable decrease of response spectra at each floor along the height of the structure. The aim of this evaluation is to determine the seismic resistance capability of as-built structures systems and components in the event of the considered Safe Shutdown earthquake (SSE). The use of anti-seismic techniques, such as seismic isolation (SI) and passive energy dissipation, seems able to ensure the full integrity and operability of important structures and systems even in very severe seismic conditions. Therefore the seismic dynamic loadings, propagated up to the main reactor system and components, may be reduced by using the developed base-isolation system (high flexibility for horizontal motions) that might combine suitable dampers with the isolating components to support reactor structures and building. To investigate and analyze the effects of the mentioned earthquake on the considered reactor internals, a deterministic methodological approach, based on the evaluation of the propagation of seismic waves along the structure, was used. To the purpose of this study a numerical assessment of dynamic structural response behaviour of the structures was accomplished by means of the finite element approach and setting up, as accurately as possible, a representative three-dimensional model of mentioned NPP structures. The obtained results in terms of response spectra (carried out from both cases of isolated and not isolated seismic analyses) were compared in order to highlight the isolation technique effectiveness.


Author(s):  
Henri Gavin ◽  
Julie Thurston ◽  
Chicahiro Minowa ◽  
Hideo Fujitani

A large-scale base-isolated steel structural frame was tested at the shaking table laboratory of the National Research Institute for Earth Sciences and Disaster Prevention. These collaborative experiments featured auto-adaptive media and devices to enhance the performance of passive base isolation systems. The planning of these experiments involved determining appropriate device control methods, the development of a controllable damping device with fail-safe characteristics, and the evaluation of the performance of the controlled isolation system subjected to strong ground motion with pronounced near-field effects. The results of the planning study and their large-scale experimental confirmation provide guidelines for the development and implementation of auto-adaptive damping devices for full scale structures.


Sign in / Sign up

Export Citation Format

Share Document