scholarly journals Production of amylases by some aspergillus and fusarium species isolated from waste corncobs in Keffi, Nigeria

2021 ◽  
Vol 16 (2) ◽  
pp. 122-129
Author(s):  
MD Makut ◽  
FU Alfa ◽  
IK Ekeleme ◽  
JE Owuna ◽  
NJ Emelogu

Amylases are important industrial enzymes that have wide applications ranging from conversion of starch to sugar syrups, to the production of cyclodextrins for the pharmaceutical industry. This investigation aimed at production of amylases using Aspergillus and Fusarium species isolated from waste-corncobs in Keffi Nigeria. Standard microbiological methods were employed for isolation and identification of the fungal isolates. The yields of amylases produced by fungi isolates were determined using Spectrometry. The isolation rate of Aspergillus and Fusarium species was high in location A, C and D with 60% and location B with 40%. The percentage occurrence of the isolates demonstrated that Aspergillus carneus was 40%, Aspergillus aculeatus was 60% and Aspergillus flavus was 20% while Fusarium moniliforme was 80% and Fusarium redolens was 40%. The result demonstrated that three species of the fungal isolates Aspergillus aculeatus, Aspergillus carneus and Fusarium moniliforme were found to produce amylases. Aspergillus aculeatus isolated from locations C3, D1 and D2 produced 0.018mg/ml, 0.018mg/ml and 0.016mg/ml amylases respectively. Similarly, Aspergillus carneus isolated from locations A1 and B2 produced 0.021mg/ml and 0.012mg/ml amylases. Fusarium moniliforme isolated from locations A3, C1 and C4 produced 0.010mg/ml, 0.016mg/ml and 0.015mg/ml amylases. Result of effect of (temperature, pH and fermentation time) for production of amylases. Whereas highest amount for amylases produced by Aspergillus aculeatus and F monliforme were produced at 28 OC. pH 5.0 was found to the best optima pH for production of amylases from the fungi studied A. carneus (2.99 mg/ml amylases). The fermentation time showed highest production of amylase by A. carneus and A. aculeatus after 72 hours while F. moniliforme produced at 96hours. The fungi species isolated from soil in keffi can be used for production of amylases.

2021 ◽  
Vol 11 (3) ◽  
pp. 382-390
Author(s):  
Makwin Danladi Makut ◽  
Chioma Deborah Nzeduru ◽  
Ike Kenneth Ekeleme ◽  
Jibril Egwu Owuna ◽  
Obuneme Smart Obiekezeie

This investigation aimed at production of gluconic acid by fungal species isolated from soil in Keffi. Standard microbiological methods were employed for isolation and identification of the fungal isolates. The yields of gluconic acid produced by the different isolates of the fungi were determined using gas chromatograph and mass Spectrometry. The occurrence of fungi showed that Rhizopus oryzae was 100%, Aspergillus carneus was 75.0%, Aspergillus niger was 75.0% and Aspergillus terreus was 100% while Trichoderma viride was 25.0% and Fusarium moniliforme was 25.0%. The result further demonstrated that three species of the fungal isolates Aspergillus niger, Aspergillus carneus and Fusarium moniliforme were found to produce gluconic acid. Screening for gluconic acid production showed that Aspergillus carneus isolated from locations As1, Cs1 and Cs2, Aspergillus niger isolated from locations Bs1, Bs2 and Cs4 were able to produce gluconic acid. Result of effect of temperature, pH, substrate concentration and fermentation time on production of gluconic acid showed that Aspergillus niger Bs2 produced highest amount of gluconic acid at 28oC, similarly highest amount for gluconic acid produced by Aspergillus carneus As1 was at 28oC, whereas Fusarium moniliforme Bs4 produced highest at 30OC. pH 6.5 was found to the best optima pH for production of both gluconic acid for the fungi studied namely Aspergillus niger Bs2 and Aspergillus carneus As1 and Fusarium moniliforme Bs4 produced highest gluconic acid at pH 5.5. The substrate concentration showed highest production of gluconic acid was produced by Aspergillus niger Bs2 at substrate concentration of 25%. Aspergillus carneus As1 produced highest at substrate concentration of 20% and Fusarium moniliforme Bs4 produced highest at substrate concentration of 20%. The fermentation time showed highest production of gluconic acid by Aspergillus niger Bs2 and Aspergillus carneus As1 was after 144 hours whereas F. moniliforme Bs4 produced gluconic acid after 120hrs respectively. The fungi species isolated from soil in keffi revealed great ability in production of gluconic acid.


2021 ◽  
Vol 1 (2) ◽  
pp. 24-30
Author(s):  
Zaharadeen Murtala Ibrahim ◽  
Makwin Danladi Makut ◽  
Abdullahi Ari Omale ◽  
Magaji Umar Abubakar

The presence of herbicides in soil is a serious problem for the environment. Studies on degradation of Herbicide (Paraquate dichloride (PD), Rake out (RO) and Gobara (GB)) by bacteria and fungi species isolated from soil environment in Keffi Metropolis Nigeria were carried out. A total of twenty (20) soil samples were collected. The bacteria and fungi were isolated from the soil and identified using standard microbiological methods. The herbicides utilization was determined using Atomic Adsorption Spectrometer. The effect of temperature on utilization of the herbicides by Enterobacter asburiae at 26OC ranges from 1.23±0.11 mg/ml for PD, 1.14±0.29 mg/ml for RO and 0.53±0.86mg/ml for GB, Pseudomonas aeruginosa utilization ranges from 1.45±0.17 mg/ml for PD, 1.17±0.35 mg/ml, for RO 1.12± 0.82mg/ml for GB. Aspergillus flavus ranges from 2.12±0.19 mg/ml for PD, 2.00±0.03 mg/ml for RO and 2.02±0.57 mg/ml for GB, Fusarium redolens were 2.19±0.26 mg/ml for PD, 2.15±0.08 mg/ml for RO and 1.92±0.16 mg/ml for GB. Effect of incubation time on microbial herbicides degradations: for E. asburiae on PD it ranges from day 1 with 0.24±0.37 mg/ml to day 20 with 2.06±0.11 mg/ml. for P. aeruginosa on PD ranges from day 1 with 0.38±0.08 mg/ml to day 20 with 2.39±1.45 mg/ml. The Utilization of herbicides by A. flavus on PD ranges from day 1 with 0.10±0.01 mg/ml to day 20 with 2.29±0.12 mg/ml. for F. redolens in PD, it ranges from day 1 with 0.27±0.08 mg/ml to day 20 with 2.57±0.27mg/ml. The process of degradation of herbicide has become very attractive as it allows for removal of herbicide over a relatively broad range of pH and temperature


1998 ◽  
Vol 88 (6) ◽  
pp. 550-555 ◽  
Author(s):  
T. K. Cotten ◽  
G. P. Munkvold

The roles of residue size and burial depth were assessed in the survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residue. Stalk pieces (small or large sizes) were soaked in a spore suspension of F. moniliforme, F. proliferatum, or F. subglutinans and placed in a field on the soil surface or buried at 15- or 30-cm depths. Residue pieces were recovered periodically, cultured on a selective medium, and microscopically examined for the presence of the inoculated Fusarium species. After 630 days, the inoculated Fusarium species were recovered from 0 to 50% of the inoculated stalk pieces in a long-term, continuous maize field, from 0 to 28% of the inoculated stalk pieces placed in a maize/soybean/oat rotation field, and from 0 to 25% of the noninoculated stalk pieces at both locations. Residue size and residue depth had significant effects on survival, but there were significant interactions among strain, depth, residue size, and time. Up to 343 days after placement in the field, survival of the three Fusarium species was not consistently different between buried residues and surface residues, but after 630 days, survival was greater from surface residues. Overall, fungus survival decreased more slowly in the surface residues than in the buried residues. Linear coefficients of determination ranged from 0.35 to 0.82 for the surface residues and from 0.81 to 0.98 for the buried residues. Decline in survival over time followed a more linear pattern in buried residues than in surface residues. Vegetative compatibility tests confirmed that F. moniliforme, F. proliferatum, and F. subglutinans strains can survive at least 630 days in surface or buried maize residue. These results demonstrate that maize residue can act as a long-term source of inoculum for infection of maize plants by these three Fusarium species.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Nabeel Al-Sharrad ◽  
Muhammad A. Al-Kataan ◽  
Maha A. Al-Rejaboo

Otomycosis is a fungal infection that frequently involves the external auditory canal. In this study, we aimed to isolation and identification the fungal isolates as etiological agents of otomycosis from some hospitals and clinics in Mosul with determination of their virulence factors of fungal etiological agents. Positive fungal infection was found in (43) samples (71.6%). The most common fungal pathogens were Candida and Aspergillus species, with Candida parapsilosis being the predominant isolates in (11) samples (16.6%). Otomycosis was more common in Female in (26) samples (43.3%).Otomycosis was the highest prevalence aged group 15-40 years (19) samples (31.3%). The present study of virulence factors revealed that the highest biofilm formation isolates were C. parapsilosis is (10) isolates which were distributed between (2) strong and (8) weak biofilm formation.Where C.trpicales, was recorded as least isolates for biofilm production.


2000 ◽  
Vol 83 (4) ◽  
pp. 963-966 ◽  
Author(s):  
Luis Jimenez ◽  
Stacey Smalls

Abstract A polymerase chain reaction (PCR) assay was developed and compared with standard methods for rapid detection of Burkholderia cepacia, a major industrial contaminant, in cosmetic and pharmaceutical raw materials and finished products. Artificially contaminated samples were incubated for 24 h in trypticase soy broth containing 4% Tween 20 and 0.5% soy lecithin. DNA was extracted from each sample using a proteinase K-tris-EDTA-Tween 20 treatment at 35°C. The extracted DNA was added to Ready-To-Go PCR beads and specific DNA primers for B. cepacia. The B. cepacia DNA primers coded for a 209-base pair (bp) fragment of the 16S rRNA ribosomal gene. No DNA amplification was observed in samples that were not spiked with B. cepacia. However, all contaminated samples showed the specific 209-bp fragment for B. cepacia. There was a 100% correlation between standard methods and the PCR assay. Standard microbiological methods required 5–6 days for isolation and identification of spiked microorganisms, whereas PCR detection and identification was completed in 27 h. PCR detection of B. cepacia allows for rapid quality evaluation of cosmetic and pharmaceutical raw materials and finished products.


Biology ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 69
Author(s):  
Ben Kalman ◽  
Dekel Abraham ◽  
Shaul Graph ◽  
Rafael Perl-Treves ◽  
Yael Meller Harel ◽  
...  

Over the past decade, there have been accumulating reports from farmers and field extension personnel on the increasing incidence and spread of onion (Allium cepa) bulb basal rot in northern Israel. The disease is caused mainly by Fusarium species. Rotting onion bulbs were sampled from fields in the Golan Heights in northeastern Israel during the summers of 2017 and 2018. Tissue from the sampled onion bulbs was used for the isolation and identification of the infecting fungal species using colony and microscopic morphology characterization. Final confirmation of the pathogens was performed with PCR amplification and sequencing using fungi-specific and Fusarium species-specific primers. Four Fusarium spp. isolates were identified in onion bulbs samples collected from the contaminated field: F. proliferatum, F. oxysporum f. sp. cepae, and two species less familiar as causative agents of this disease, F. acutatum and F. anthophilium. Phylogenetic analysis revealed that these species subdivided into two populations, a northern group isolated from white (Riverside cv.) onion bulbs, and a southern group isolated from red (565/505 cv.) bulbs. Pathogenicity tests conducted with seedlings and bulbs under moist conditions proved that all species could cause the disease symptoms, but with different degrees of virulence. Inoculating seeds with spore suspensions of the four species, in vitro, significantly reduced seedlings’ germination rate, hypocotyl elongation, and fresh biomass. Mature onion bulbs infected with the fungal isolates produced typical rot symptoms 14 days post-inoculation, and the fungus from each infected bulb was re-isolated and identified to satisfy Koch’s postulates. The onion bulb assay also reflected the degree of sensitivity of different onion cultivars to the disease. This work is the first confirmed report of the direct and primary cause of Fusarium onion basal rot disease in northeastern Israel. These findings are a necessary step towards uncovering the mycoflora of the diseased onion plants and developing a preventive program that would reduce the disease damage.


2018 ◽  
Vol 78 (11) ◽  
pp. 2288-2296 ◽  
Author(s):  
Hongying Xu ◽  
Ru Jin ◽  
Chan Zhang ◽  
Yupeng Wu ◽  
Xiaohui Wang

Abstract Excessive emission of plant nutrients (such as nitrogen and phosphorus) into the water body can induce eutrophication. Therefore, how to control eutrophic water efficiently and economically is very important. In the paper, highly efficient aerobic denitrifying phosphorus removing J16 bacteria was isolated from the activated sludge of an aerobic bioreactor in Taiyuan municipal wastewater treatment plant by using the blue–white spot screening method, an aerobic phosphorus absorption test, nitrate reduction test, nitrogen removal experiments, and plate coating and streaking methods. Through 16S rDNA gene homology comparison and physiological and biochemical identification, the J16 strain was preliminarily identified as Escherichia coli, with a sequence similarity of 99%. The 16S rDNA sequence of strain J16 was submitted to GenBank (accession number: MF667015). The effect of temperature, pH, percentage of inoculum and phosphate-P (PO43−-P) concentration on denitrification and phosphorus removal efficiency was investigated through a single-factor experiment. The optimum conditions of the J16 strain for denitrification and phosphorus removal were as follows: 30°C, neutral or weak alkaline (pH: 7.2–8), and 3% of inoculum, respectively. The denitrification and phosphorus removal efficiency of strain J16 was the highest when PO43−-P and nitrate-N(NO3−-N) concentrations were 8.9 and 69.31 mg/L, and the removal were 96.03% and 94.55%, respectively. In addition, strain J16 could reduce phosphoric acid to phosphine (PH3) and remove some phosphorus under hypoxia conditions. This is the first study to report the involvement of Escherichia coli in nitrogen and phosphorus removal under aerobic and hypoxia conditions. Based on the above results, the strain J16 can effectively remove nitrogen and phosphorus, and will be utilized in enhancing treatment of nitrogen and phosphorus-containing industrial wastewater and phosphorus reclamation.


2016 ◽  
Vol 4 (2) ◽  
pp. 38-41 ◽  
Author(s):  
MT Islam ◽  
MK Hossain ◽  
ATMM Elahi ◽  
M Purkayastha ◽  
MM Rahman

The present study was designed to investigate the mycological contamination of commercial broiler feeds used in poultry establishments in sylhet, Bangladesh. The feed samples of commercial broiler feed (Starter, Grower and Finisher) were collected from the different areas of Sylhet district. A total of 189 commercial broiler feed samples where 63 Starter, 63 Grower and 63 Finisher were collected from the different areas of local market in Sylhet. The selected areas were Kadamtali, Shibjong, Khadim, Kamal Bazar, Dakshin Surma, Fenchugonj. From the feed samples analyzed for the presence of fungal agents, 144 (76.2%) were found positive for one or more fungal species. Fungal isolates were found among 36 (57%) of the 63 Starter feed samples, 45 (71.4%) of the 63 Grower feed samples and 63 (100%) of the 63 Finisher feed samples. The fungal agents isolated from Broiler Starter Feeds, Aspergillus spp. 51 (70.8%) has the highest frequency of occurrence, followed by Fuserium spp. 12 (16.7%) and least is Rhizopus sp. 9(12.5%). Similarly, in case of Broiler Grower Feeds, Aspergillus spp. 66 (68.8%) has the highest frequency of occurrence, followed by Fuserium spp. 18 (18.7%) and least is Rhizopus sp. 12(12.5%). In case of Broiler Finisher Feeds, Aspergillus spp. 90 (69.8%) has the highest rate of occurrence followed by Fuserium spp. 24 (18.6%) and least is Rhizopus sp. 15 (11.6%) respectively.International Journal of Natural Sciences (2014), 4(2) 38-41


2004 ◽  
Vol 67 (3) ◽  
pp. 536-543 ◽  
Author(s):  
B. H. BLUHM ◽  
M. A. COUSIN ◽  
C. P. WOLOSHUK

Some species of Fusarium can produce mycotoxins during food processing procedures that facilitate fungal growth, such as the malting of barley. The objectives of this study were to develop a 5′ fluorogenic (Taqman) real-time PCR assay for group-specific detection of trichothecene- and fumonisin-producing Fusarium spp. and to identify Fusarium graminearum and Fusarium verticillioides in field-collected barley and corn samples. Primers and probes were designed from genes involved in mycotoxin biosynthesis (TRI6 and FUM1), and for a genus-specific internal positive control, primers and a probe were designed from Fusarium rDNA sequences. Real-time PCR conditions were optimized for amplification of the three products in a single reaction format. The specificity of the assay was confirmed by testing 9 Fusarium spp. and 33 non- Fusarium fungal species. With serial dilutions of purified genomic DNA from F. verticillioides, F. graminearum, or both as the template, the detection limit of the assay was 5 pg of genomic DNA per reaction. The three products were detectable over four orders of magnitude of template concentration (5 pg to 5 ng of genomic DNA per reaction); at 50 ng template per reaction, only the TRI6 and FUM1 PCR products were detected. Barley and corn samples were evaluated for the presence of Fusarium spp. with traditional microbiological methods and with the real-time PCR assay. The 20 barley samples and 1 corn sample that contained F. graminearum by traditional methods of analysis tested positive for the TRI6 and internal transcribedspacer (ITS) PCR products. The five corn samples that tested positive for F. verticillioides by traditional methods also were positive for the FUM1 and ITS PCR products. These results indicate that the described multiplex real-time PCR assay provides sensitive and accurate differential detection of fumonisin- and trichothecene-producing groups of Fusarium spp. in complex matrices.


Sign in / Sign up

Export Citation Format

Share Document