Isolation and Identification of Fungal Isolates caused Otomycosis from some Hospitals and Clinics in Mosul with Determination of Their Virulence Factors

2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Nabeel Al-Sharrad ◽  
Muhammad A. Al-Kataan ◽  
Maha A. Al-Rejaboo

Otomycosis is a fungal infection that frequently involves the external auditory canal. In this study, we aimed to isolation and identification the fungal isolates as etiological agents of otomycosis from some hospitals and clinics in Mosul with determination of their virulence factors of fungal etiological agents. Positive fungal infection was found in (43) samples (71.6%). The most common fungal pathogens were Candida and Aspergillus species, with Candida parapsilosis being the predominant isolates in (11) samples (16.6%). Otomycosis was more common in Female in (26) samples (43.3%).Otomycosis was the highest prevalence aged group 15-40 years (19) samples (31.3%). The present study of virulence factors revealed that the highest biofilm formation isolates were C. parapsilosis is (10) isolates which were distributed between (2) strong and (8) weak biofilm formation.Where C.trpicales, was recorded as least isolates for biofilm production.

Author(s):  
Nima Bahador ◽  
Saeed Shoja ◽  
Foroogh Faridi ◽  
Banafsheh Dozandeh-Mobarrez ◽  
Fatemeh Izadpanah Qeshmi ◽  
...  

Background and Objectives: Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen. The presence of several virulence factors such as exotoxin and exoenzyme genes and biofilm may contribute to its pathogenicity. The purpose of this study was to investigate the presence of toxA, exoU and exoS, the determination of biofilm production and antimicrobial susceptibility patterns among clinical isolates of P. aeruginosa. Materials and Methods: In this study, 75 isolates of P. aeruginosa were recovered from various clinical specimens. Antimi- crobial susceptibility pattern of isolates were identified. Virulence genes toxA, exoU and exoS were determined using PCR. The ability of biofilm production was assessed. Results: Antimicrobial susceptibility test showed that 12 strains were resistant to more than 8 antibiotics (17.14%). The most effective antibiotic was colistin as 98.6% of isolates were sensitive. The frequencies of exoU and exoS genes were detected as 36.6% and 55.7%, respectively. In addition, 98.6% of the isolates were biofilm producers. Exotoxin A was detected in sixty-eight isolates (95.7%). Conclusion: The findings of this study showed that, the presence of P. aeruginosa exotoxin and exoenzyme genes, particu- larly, the exoU gene is the most common virulence factors in the bacterial isolates from urine samples. Biofilm is a serious challenge in the treatment of P. aeruginosa infection.


1989 ◽  
Vol 103 (1) ◽  
pp. 30-35 ◽  
Author(s):  
K. O. Paulose ◽  
S. Al Khalifa ◽  
P. Shenoy ◽  
R. K. Sharma

AbstractOtomycosis (fungal infection of the ear) is a not uncommon clinical problem encountered in our ENT practice. It makes up to 6 per cent of all patients with symptoms of ear disease seen in the Outpatient Clinic. Of the 193 patients with a clinical diagnosis of otomycosis, 171 cases produced positive fungal isolates. In this study Aspergillus species (niger and fumigatus) have been the most common fungal pathogens. Various aetiopathological factors have been examined in detail, and the available literature reviewed. The results of the treatment by nine antifungal agents currently available in Bahrain have been analysed.


Author(s):  
M. Ishaya ◽  
A. E. Anzaku ◽  
W. C. John ◽  
N. Janfa ◽  
O. Oke ◽  
...  

Aim: This study was carried out to isolate, identify and characterize fungal pathogens associated with post-harvest spoilage of cucumber. Study Design: This research study was done using random sampling technique.  Place and Duration of Study: The experiment was carried out from March to June, 2019 at biology laboratory Federal College of Forestry, Jos. Methodology: Fungi isolates were obtained from diseased portions of the cucumber fruit samples cultured on PDA media and incubated at 28ºC2 for seven days. The mycelial were identified macroscopically and microscopically. Pathogenicity tests were conducted for all the fungal pathogens identified by inoculating healthy cucumber samples and incubating for ten days with the readings being taken at two day intervals. The data obtained were analyzed using ANOVA and means were separated using LSD at P ≤ 0.05. Results: Aspergillus fumigatus, Fusarium sp., Geotrichum candidum and Yeast sp were isolated and identified. Result showed that Gada biu market was the most heavily infested location with all the fungal isolates. Geotrichum candidum constituted the highest (50%) occurrence of fungal isolates from all locations. All the fungal isolates were found to be pathogenic on cucumber fruits, with Fusarium being the most destructive, followed by yeast and Geotrichum candidum and the least was Aspergilus fumigatus. Conclusion: The results obtained in this study showed the isolates identified were involved in Cucumber spoilage. Therefore, Careful handling of Cucumber fruits should be ensured to prevent the spread of these pathogenic fungi.


2007 ◽  
Vol 53 (3) ◽  
pp. 372-379 ◽  
Author(s):  
N. Klibi ◽  
K. Ben Slama ◽  
Y. Sáenz ◽  
A. Masmoudi ◽  
S. Zanetti ◽  
...  

Phenotypic and genotypic determination of virulence factors were carried out in 46 high-level gentamicin-resistant (HLGR) clinical Enterococcus faecalis (n = 34) and Enterococcus faecium (n = 12) isolates recovered from different patients in La Rabta Hospital in Tunis, Tunisia, between 2000 and 2003 (all these isolates harboured the aac(6′)–aph(2″) gene). The genes encoding virulence factors (agg, gelE, ace, cylLLS, esp, cpd, and fsrB) were analysed by PCR and sequencing. The production of gelatinase and hemolysin, the adherence to caco-2 and hep-2 cells, and the capacity for biofilm formation were investigated in all 46 HLGR enterococci. The percentages of E. faecalis isolates harbouring virulence genes were as follows: gelE, cpd, and ace (100%); fsrB (62%); agg (56%); cylLLS (41.2%); and esp (26.5%). The only virulence gene detected among the 12 HLGR E. faecium isolates was esp (58%). Gelatinase activity was detected in 22 of the 34 E. faecalis isolates (65%, most of them with the gelE+–fsrB+ genotype); the remaining 12 isolates were gelatinase-negative (with the gelE+–fsrB– genotype and the deletion of a 23.9 kb fragment of the fsr locus). Overall, 64% of the cylLLS-containing E. faecalis isolates showed β-hemolysis. A high proportion of our HLGR E. faecalis isolates, in contrast to E. faecium, showed moderate or strong biofilm formation or adherence to caco-2 and hep-2 cells.


2016 ◽  
Vol 36 (2) ◽  
pp. 53 ◽  
Author(s):  
Tapan Majumdar ◽  
JhinukBasu Mullick ◽  
Raunak Bir ◽  
Jayanta Roy ◽  
SamirKumar Sil

2017 ◽  
Vol 27 (4) ◽  
Author(s):  
Suhail Jawdat Fadihl

Locally produced cheese which called (Gibin Al arab) is one of the most common dairy products in Iraq, it has an economic importance and great social value. This research aimed to identify yeast species from locally produced cheese (Gibin Al Arab) in Diyala city which traditionally made and sold in markets of old town in Baquba, and study some of virulence factors (Esterase production, Phospholipase and Hemolytic production) of yeasts belong to genus of Candida . All cheese samples showed contamination with varying number of yeast, total 88 yeast isolates obtained from 70 cheese samples, they were Geotrichum candidum(20.5%), Rhodotorela species(19.4%), Candida parapsilosis (18%), Candida albicans (13.6%), Candida  tropicalis (10.5%), Candida krusei (8%), Saccharomyces cerevisice (3.3%) and mixed yeast (un identified) at rate of (6.7%). Species of Candida formed half of the total isolates and the most prevalent isolate of Candida spp. was Candida parapsilosis .According to the results determining of  (Esterase production, Phospholipase and Hemolytic production) as a virulence factors identifying Candida spp. these activities referred that all isolates of Candida spp. show one or more of these activities and that isolates of  medically important species Candida albicans were the most virulent isolates. this referred to the importance of take attention about consuming of such types of dairy products and need for applying more hygienic measures during handling, processing of milk and form of storage and/or selling of cheese.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
P Centorame ◽  
L Iacone ◽  
R Salini ◽  
A Ciarulli ◽  
F Guidi ◽  
...  

Abstract Background In literature, there are no standardized laboratory methods to detect formed biomass by colorimetric analysis. The purpose of this study was to compare three staining methods and two different wavelengths for determination of biofilm formation of Listeria monocytogenes (Lm) strains. Methods Three strains of Lm isolated from different origin were tested using 96 well polistirene plates at 12 °C and 30 °C, after incubation the wells were subjected to washing, detaching and staining with crystal violet (CV) at 0.2% and 2% (Panreac EU) in 95% ethanol and with Gram's crystal violet solution (Merck KGaA, Germany). The absorbance at 492nm and 540nm wavelengths was read using a spectrophotometer (SIRIO S, Seac, Firenze, Italia). Results The strains incubated at 12 °C displayed production of biofilm when stained with CV 2% and with Gram's crystal violet solution, both at 492 and 540 nm (with better evidence at 540 nm). If CV 0.2% was used to stain and reading at both optical densities there was evidence of weak or no biofilm production. At 30 °C, the biofilm production was displayed at both temperature and with all the stains. For all the strains and for all the conditions tested, the absorbance was greater but not proportional using the Gram's crystal violet solution, versus the CV 0,2% and CV 2%, and absorbance was higher at 540nm versus at 492nm. Conclusions Results confirmed the lack of reproducibility of each of the method used to detect and quantify the biomass produced during a biofilm formation test in vitro and the absence of ratio between the different results obtained using different CV concentration and wavelengths for reading. Key messages Biofilm production at 12 °C could not be adequately detected staining the wells with CV 0,2%. Absorbance could be influenced by the solvent in the stain used (ethanol, methanol or phenol or mixtures). To obtain data for assessment of biomass formation, being the method characterized by poor reproducibility, the laboratory should use at least the same stain and wavelength.


Author(s):  
Bajarangi Lal Chaudhary ◽  
Dakshina Bisht ◽  
Sameer Singh Faujdar

Methicillin-resistant Staphylococcus aureus is a clinically significant pathogen that causes infections ranging from skin and soft tissue infections to life-threatening sepsis. Biofilm formation by MRSA is one of the crucial virulence factor. Determination of beta-lactamase and biofilm production among Staphylococcus aureus was obtained from various clinical specimens. Standard bacteriological procedures were used for isolation and identification and antibiotic sensitivity was determined using the Kirby Bauer disc diffusion method according to CLSI guidelines. The cloverleaf method, acidometric, iodometric and chromogenic methods were used to detect beta-lactamase while the microtiter plate method and Congo red agar method were used to detect biofilm production. Of the 288 MRSA strains isolated from various clinical specimens,198 (67.07%) were biofilm producers. Cloverleaf and chromogenic (nitrocefin) disc shows 100% results for beta-lactamase detection. Vancomycin was 100% sensitive followed by teicoplanin (92.36%) and linezolid (89.93%). Cloverleaf and nitrocefin disc methods were the most sensitive for detection of beta-lactamase in S. aureus and there was no significant relation between biofilm production and antibiotic sensitivity pattern of S. aureus.


Author(s):  
Yusufu, W. N. ◽  
Suleiman, H. O. ◽  
Akwa, V. Y. ◽  
David, D. L. ◽  
Taiga, A.

Propionibacterium acnes (P. acnes) a member of the normal flora of the skin has constantly been associated with deep tissue infections especially during medical processes. P. acnes have been isolated in deep tissues and are believed to be an aetiological agent in these infections, contributing to the progression of some of these diseases. The biofilm formation ability between different strains of P. acnes was determined. Ten (10) P. acnes clinical isolates were considered, two (2) from acne vulgaris and eight (8) [two (2) per recA types 1A1, 1B, II and III] from lumber herniation tissues. Semi quantitative biofilm analysis using the microtiter plate assay was used with some modification. The semi quantitative biofilm assay was done in triplicates. The result obtained from the biofilm triplicates from 4 days’ incubation using 3 days’ culture showed that isolates 17(IB), 82(IB) and 55(II) showed very high biofilm production for 2 replicates which implies that they are real biofilm producing isolates. Using overnight cultures, higher biofilm production was witnessed with isolates 1(III), Lesion 7 and 84 (IA1) being the highest biofilm producers. Although with 3 days’ culture, isolate 1(III) could easily be discarded as a-non biofilm producer, while lesion 7 and 84 (IA) has been associated to biofilm formation in 3 days’ culture. The production of biofilms by isolates supports the theory that the ability of P. acnes to form biofilms enables it to attach to medical implants hence causing deep tissue infections.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
François L. Mayer ◽  
James W. Kronstad

ABSTRACTBacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium,Bacillus safensis, which potently blocked several keyCryptococcus neoformansvirulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibitedde novocryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria.B. safensisalso had anti-virulence factor activity against another major human-associated fungal pathogen,Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibitedC. albicansfilamentation and biofilm formation. In particular,B. safensisphysically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect ofB. safensis.IMPORTANCEPathogenic fungi are estimated to contribute to as many human deaths as tuberculosis or malaria. Two of the most common fungal pathogens,Cryptococcus neoformansandCandida albicans, account for up to 1.4 million infections per year with very high mortality rates. Few antifungal drugs are available for treatment, and development of novel therapies is complicated by the need for pathogen-specific targets. Therefore, there is an urgent need to identify novel drug targets and new drugs. Pathogens use virulence factors during infection, and it has recently been proposed that targeting these factors instead of the pathogen itself may represent a new approach to develop antimicrobials. Here, we identified a soil bacterium that specifically blocked virulence factor production and biofilm formation byC. neoformansandC. albicans. We demonstrate that the bacterial antipathogen mechanism is based in part on targeting the fungal cell wall, a structure not found in human cells.


Sign in / Sign up

Export Citation Format

Share Document