scholarly journals New dendroclimatological research in oak, S (Quercus Frainetto Ten.) forestry in Šumadija-Region- (Central Serbia) as a basis for climate change monitoring

2021 ◽  
Vol 11 (2) ◽  
pp. 249-259
Author(s):  
Severin Šikanja ◽  
Nevena Milovanović

In this work present study to describe the survey of climatic change in the case in Šumadija-Central Serbia. Climate change due to a fragile ecosystem in semi-arid, and arid region such as Serbia is one of the most challenging climatological and hydrological problems. Dendrochronology, wich uses tree rings to their exact year of formation to analyse temporal and spatial patterns of processes in the physical and cultural sciences, can be used to evaluate the effects of climate change. In this study, the effects of climate change werw simulated using dendrochronology (tree rings) and an artificial neural network (ANN) for the period from 1900—2015. The present study was executed using the (Quercus frainetto Ten.). Tree rings width, temperature and precipitation were the input parameters for the study, and climate change parameters were the outputs. After the training process, the model was verified. The verified network and tree rings were used to simulate climatic parameter changes during the past times. The results showed that the integration of dendroclimatology and an ANN renders a high degree of accuracy and efficiency in the simulation of climatic change. The results showed that the climatic of the study area changed from semiarid, to arid, and its annual precipitation decreased significantly.

2018 ◽  
Vol 64 (No. 3) ◽  
pp. 139-147 ◽  
Author(s):  
Khaleghi Mohammad Reza

The present study tends to describe the survey of climatic changes in the case of the Bojnourd region of North Khorasan, Iran. Climate change due to a fragile ecosystem in semi-arid and arid regions such as Iran is one of the most challenging climatological and hydrological problems. Dendrochronology, which uses tree rings to their exact year of formation to analyse temporal and spatial patterns of processes in the physical and cultural sciences, can be used to evaluate the effects of climate change. In this study, the effects of climate change were simulated using dendrochronology (tree rings) and an artificial neural network (ANN) for the period from 1800 to 2015. The present study was executed using the Quercus castaneifolia C.A. Meyer. Tree-ring width, temperature, and precipitation were the input parameters for the study, and climate change parameters were the outputs. After the training process, the model was verified. The verified network and tree rings were used to simulate climatic parameter changes during the past times. The results showed that the integration of dendroclimatology and an ANN renders a high degree of accuracy and efficiency in the simulation of climate change. The results showed that in the last two centuries, the climate of the study area changed from semiarid to arid, and its annual precipitation decreased significantly.


Author(s):  
Chunli Zhao ◽  
Jianguo Chen ◽  
Peng Du ◽  
Hongyong Yuan

It has been demonstrated that climate change is an established fact. A good comprehension of climate and extreme weather variation characteristics on a temporal and a spatial scale is important for adaptation and response. In this work, the characteristics of temperature, precipitation, and extreme weather distribution and variation is summarized for a period of 60 years and the seasonal fluctuation of temperature and precipitation is also analyzed. The results illustrate the reduction in daily and annual temperature divergence on both temporal and spatial scales. However, the gaps remain relatively significant. Furthermore, the disparity in daily and annual precipitation are found to be increasing on both temporal and spatial scales. The findings indicate that climate change, to a certain extent, narrowed the temperature gap while widening the precipitation gap on temporal and spatial scales in China.


2021 ◽  
Author(s):  
Gunta Kalvāne ◽  
Andis Kalvāns ◽  
Agrita Briede ◽  
Ilmārs Krampis ◽  
Dārta Kaupe ◽  
...  

<p>According to the Köppen climate classification, almost the entire area of Latvia belongs to the same climate type, Dfb, which is characterized by humid continental climates with warm (sometimes hot) summers and cold winters.  In the last decades whether conditions on the western coast of Latvia more characterized by temperate maritime climates. In this area there has been a transition (and still ongoing) to the climate type Cfb.</p><p>Temporal and spatial changes of temperature and precipitation regime have been examined in whole territory to identify the breaking point of climate type shifts. We used two type of climatological data sets: gridded daily temperature from the E-OBS data set version 21.0e (Cornes et al., 2018) and direct observations from meteorological stations (data source: Latvian Environment, Geology and Meteorology Centre). The temperature and precipitation regime have changed significantly in the last century - seasonal and regional differences can be observed in the territory of Latvia.</p><p>We have digitized and analysed more than 47 thousand phenological records, fixed by volunteers in period 1970-2018. Study has shown that significant seasonal changes have taken place across the Latvian landscape due to climate change (Kalvāne and Kalvāns, 2021). The largest changes have been recorded for the unfolding (BBCH11) and flowering (BBCH61) phase of plants – almost 90% of the data included in the database demonstrate a negative trend. The winter of 1988/1989 may be considered as breaking point, it has been common that many phases have begun sooner (particularly spring phases), while abiotic autumn phases have been characterized by late years.</p><p>Study gives an overview aboutclimate change (also climate type shift) impacts on ecosystems in Latvia, particularly to forest and semi-natural grasslands and temporal and spatial changes of vegetation structure and distribution areas.</p><p>This study was carried out within the framework of the Impact of Climate Change on Phytophenological Phases and Related Risks in the Baltic Region (No. 1.1.1.2/VIAA/2/18/265) ERDF project and the Climate change and sustainable use of natural resources institutional research grant of the University of Latvia (No. AAP2016/B041//ZD2016/AZ03).</p><p>Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. and Jones, P. D.: An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets, J. Geophys. Res. Atmos., 123(17), 9391–9409, doi:10.1029/2017JD028200, 2018.</p><p>Kalvāne, G. and Kalvāns, A.(2021): Phenological trends of multi-taxonomic groups in Latvia, 1970-2018, Int. J. Biometeorol., doi:https://doi.org/10.1007/s00484-020-02068-8, 2021.</p>


2018 ◽  
Vol 16 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Jiban Mani Poudel

Satellite images, repeated photography, temperature and precipitation data, and other proxy scientific evidences support the claim that climate is changing rapidly in Nepal, including in the Trans-Himalayan regions of the country. Climate change in the Trans-Himalayan region of Nepal is altering the existing relations of functional socio-ecological system for generations. This ethnographic assessment of Nhāson village looks at the disturbance posed by climate change to the social and ecological relationship in reference to livestock management practices. It focuses on two thematic areas of communities’ verbalisation of issues and challenges faced by the mountain herders in the climate change context. This paper is the product of ethnographic study between the years 2012 and 2014 in Nhāson. The locals’ attachment to environment and witnesses of change is capable of telling the story on the disturbance of climate change in the social and ecological systems, contextually. The stories gathered during walking, herding, travelling, watching and observing of the places are “real stories” with insights into the past climate variability and fluctuation which is critically valuable to understand the environmental phenomena at times when scientific evidences are not sufficient. Ethnographic study can contribute in documenting the place and cultural specific stories as a powerful evidence to climate change and its impact on grounded social and ecological systems.


2020 ◽  
Vol 93 (5) ◽  
pp. 675-684
Author(s):  
Nicolas Latte ◽  
Philippe Taverniers ◽  
Tanguy de Jaegere ◽  
Hugues Claessens

Abstract To increase forest resilience to global change, forest managers are often directing forest stands towards a broader diversity of tree species. The small-leaved lime (Tilia cordata Mill.), a rare and scattered species in northwestern Europe, is a promising candidate for this purpose. Its life traits suggest a high resilience to climate change and a favourable impact on forest ecosystem services. This study used a dendroecological approach to assess how lime tree radial growth had responded to the past climatic change. First, 120 lime trees from nine sites were selected in southern Belgium based on criteria adapted to the rareness of the species. Chronology quality was assessed and resulting tree-ring series were validated at site and region levels. Second, a range of dendrochronological methods was used to analyze the changes over time in the variability and long-term trends of lime tree growth and their relation to climate during the period 1955–2016. Last, behaviour of lime trees was compared with that of beech from the same region and time period. For this purpose, the same methodology was applied to an additional beech tree-ring dataset (149 trees from 13 sites). Beech is the climax tree species of the region, but is known to be drought-sensitive and has shown weaknesses in the current climate. The quality of our tree-ring series attests that dendroecological investigation using rare and scattered species is possible, opening the way to further analysis on other such lesser-known forest tree species. The analysis showed that the small-leaved lime had been resilient to the past climatic change in multiple ways. Lime growth increased during the preceding decades despite an increased frequency and intensity of stressful climatic events. Lime growth quickly recovered in the years following the stresses. The growth–climate relationships were either stable over time or had a positive evolution. The behaviour of lime contrasted strongly with that of beech. Lime performed better than beech in every analysis. Small-leaved lime is thus a serious candidate for addressing climate change challenges in the region. It should be considered by forest managers planning to improve the sustainability and resilience of their forests, in particular in vulnerable beech stands.


2006 ◽  
Vol 2 (6) ◽  
pp. 1051-1073 ◽  
Author(s):  
O. Solomina ◽  
G. Wiles ◽  
T. Shiraiwa ◽  
R. D’Arrigo

Abstract. Tree rings, ice cores and glacial geologic histories for the past several centuries offer an opportunity to characterize climate variability and to identify the key climate parameters forcing glacier expansions. A newly developed larch ring-width chronology is presented for Kamchatka that is sensitive to past summer temperature variability. This record provides the basis to compare with other proxy records of inferred temperature and precipitation change from ice core and glacier records, and to characterize climate for the region over the past 400 years. Individual low growth years in the larch record are associated with several known and proposed volcanic events that have been observed in other proxy records from the Northern Hemisphere. Comparison of the tree-rings with an ice core record of melt feature index for Kamchatka's Ushkovsky volcano confirms a 1–3 year dating accuracy for this ice core series over the late 18th to 20th centuries. Decadal variations of low summer temperatures (tree-ring record) and high annual precipitation (ice core record) are broadly consistent with intervals of positive mass balance measured and estimated at several glaciers, and with moraine building, provides a basis to interpret geologic glacier records.


Author(s):  
Umut Okkan ◽  
Gul Inan

This study aims to discuss the potentials of machine learning methods such as artificial neural network (ANN), least squares support vector machine (LSSVM), and relevance vector machine (RVM) in downscaling of simulations of a general circulation model (GCM) for monthly temperature and precipitation of the Demirkopru Dam located in the Aegean region of Turkey. The predictors are obtained from ERA-Interim re-analysis data. The best performed downscaling model is integrated into European Centre Hamburg Model (ECHAM5) with A2 future scenario. The results are then discussed to assess the probable climate change effects on temperature and precipitation.


2010 ◽  
Vol 14 (10) ◽  
pp. 1979-1987 ◽  
Author(s):  
J. Wang ◽  
H. Li ◽  
X. Hao

Abstract. The spatial and temporal variations of snowcover distribution, and snowmelt runoff are considered as sensitive indicators for climatic change. The purpose of this paper is to analyze and forecast the responses of snowmelt runoff to climate change in an inland river basin. The upper basin of Heihe River in Northwestern China was chose as the study area, and the observation data from the meteorological and hydrological stations were utilized to analyze the status and regularity of the climatic change over the past 50 years. Snow cover area was obtained by an optimized technology using Moderate Resolution Imaging Spectroradiometer data with Normalized Difference Snow Index adjustment and topographic correction. A concept of potential snowmelt was suggested to illustrate the response of spatial snowmelt to climate change. The results show that the annual SCA proportion and the potential snowmelt keep an increasing trend since 2000. There is a negative relationship between annual air temperature and SCA proportion from 2000 to 2008. Snowmelt Runoff Model was chose to simulate snowmelt runoff and scenario forecast the change trend of snowmelt runoff in this region. The results show that climatic warming was apparent in the upper basin of Heihe River over the past 50 a. Annual average air temperature of three different weather stations located in the basin has increased 2.1 °C, 2.6 °C and 2.9 °C respectively from 1956 to present. The snowmelt runoff has increased obviously from 1970 to present. With different warming climate scenarios, the results by using SRM simulating showed that the first occurred time of snowmelt runoff shift ahead and discharge become larger as responses of snowmelt runoff to air temperature increasing, and the influence of temperature rising on average discharge of the whole snow season is not obvious.


Sign in / Sign up

Export Citation Format

Share Document