scholarly journals Piper nigrum based diet had a chemopreventive antineoplastic effect potentiated by Curcuma longa in C57BL/6 mice

2021 ◽  
Vol 9 (3) ◽  
pp. 188-203
Author(s):  
Pérez-Pérez Ana Isabel ◽  
Quiroz-Guerra Kimberly Alexandra ◽  
Ruiz-Escalona Evelyn Victoria ◽  
Bonfante-Cabarcas Rafael Armando

Background: Medicinal plants represent a proven alternative strategy to treat cancer. Objective: To determine Curcuma longa (turmeric) and Piper nigrum (black pepper) effects in vitro and on the evolution of malignant melanoma B16F10 in C57BL/6 mice. Methods: 103 female mice divided in 4 groups: Control (n=44), Turmeric (n=20), Pepper (n=21), Turpepp (n=18). Turmeric 5% and/or pepper 0.5% were mixed with a dough made of pre-cooked cornmeal, eggs and coconut milkshake and given ad libitum to experimental groups as main diet; control received dough based diet. 200,000 melanoma cells were transplanted into right leg hind paw. Clinical, psychological, pathological and biochemical parameters were evaluated in vivo to measure melanoma progression. In vitro, metabolic activity was measured by quantifying anaerobic glycolysis and viability through MTT assay. Results: Combined preventive treatment with turmeric and pepper increased latency time for tumor onset, improved locomotor activity, preserved nociceptive response, decreased tumor volume and weight, reduced metastases and increased survival. These results were reproduced in the Pepper group, but with less statistical force; however, pepper showed greater potency in vitro experiments. Conclusion: Pepper showed an antineoplastic chemopreventive activity in B16F10 malignant melanoma, which was enhanced by the synergistic effect of turmeric.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Christine T. Peterson ◽  
Dmitry A. Rodionov ◽  
Stanislav N. Iablokov ◽  
Meredith A. Pung ◽  
Deepak Chopra ◽  
...  

Although the impact of medicinal and culinary herbs on health and disease has been studied to varying extents, scarcely little is known about the impact of these herbs on gut microbiota and how such effects might contribute to their health benefits. We applied in vitro anaerobic cultivation of human fecal microbiota followed by 16S rRNA sequencing to study the modulatory effects of 4 culinary spices: Curcuma longa (turmeric), Zingiber officinale (ginger), Piper longum (pipli or long pepper), and Piper nigrum (black pepper). All herbs analyzed possessed substantial power to modulate fecal bacterial communities to include potential prebiotic and beneficial repressive effects. We additionally analyzed the sugar composition of each herb by mass spectrometry and conducted genome reconstruction of 11 relevant sugar utilization pathways, glycosyl hydrolase gene representation, and both butyrate and propionate biosynthesis potential to facilitate our ability to functionally interpret microbiota profiles. Results indicated that sugar composition is not predictive of the taxa responding to each herb; however, glycosyl hydrolase gene representation is strongly modulated by each herb, suggesting that polysaccharide substrates present in herbs provide selective potential on gut communities. Additionally, we conclude that catabolism of herbs by gut communities primarily involves sugar fermentation at the expense of amino acid metabolism. Among the herbs analyzed, only turmeric induced changes in community composition that are predicted to increase butyrate-producing taxa. Our data suggests that substrates present in culinary spices may drive beneficial alterations in gut communities thereby altering their collective metabolism to contribute to the salubrious effects on digestive efficiency and health. These results support the potential value of further investigations in human subjects to delineate whether the metabolism of these herbs contributes to documented and yet to be discovered health benefits.


2022 ◽  
Vol 11 (1) ◽  
pp. 11-28
Author(s):  
Sami Bawazeer ◽  
Ibrahim Khan ◽  
Abdur Rauf ◽  
Abdullah S. M. Aljohani ◽  
Fahad A. Alhumaydhi ◽  
...  

Abstract As compared to conventional techniques, currently nanotechnology has gained significant attention of scientists for the development of plant-based natural nanoparticles (NPs) due to their safety, effectiveness, and environment friendly nature. The current study was aimed for development, characterization (energy-dispersive X-ray, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy), and evaluation of the biological efficiency of black pepper (BP; Piper nigrum) fruit-based gold NPs (BP-AuNPs) through different in vitro and in vivo assays. BP extract revealed maximum antibacterial and antifungal potential against Escherichia coli (24 mm) and Aspergillus flavus (47 mm), respectively. However, BP-AuNPs (200 µg·mL−1) inhibited the urease, xanthine oxidase, and carbonic acid-II activities with a percent inhibition of 83.11%, 91.28%, and 86.87%, respectively. Further, the anti-inflammatory effect of BP extract at the dose of 100 mg·kg−1 was 72.66%, whereas for BP-AuNPs it was noticed to be 91.93% at the dose of 10 mg·kg−1. Similarly, the extract of BP and prepared AuNPs demonstrated significant (p < 0.01) sedative effect at all tested doses. The BP-AuNPs catalytically reduced methyl orange dye. Results suggest that BP-AuNPs possess significant biological activities, and further studies must be conducted to identify the probable mechanism of action associated with these activities.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 286 ◽  
Author(s):  
Van Anh Ngo ◽  
San-Lang Wang ◽  
Van Bon Nguyen ◽  
Chien Thang Doan ◽  
Thi Ngoc Tran ◽  
...  

In this study, 90 root samples were collected from 30 black pepper farms in three provinces in the Central Highlands of Vietnam. A total of 352 endophytic bacteria were isolated and their morphology described. An in vitro assay on the antifungal activity of these isolates was then conducted and 47 isolates were found to have antagonistic activity on Phytophthora fungi. The antifungal activity of the 47 isolates was evaluated in vivo by shoot assay. Among these 47 isolates, 6 were selected for further investigation. The six isolates were classified and identified by sequencing the 16S RNA gene and phylogeny. The results showed that all six endophytic bacteria belong to the following species of Bacillus genus: B. siamensis, B. amyloliquefaciens, B. velezenis, and B. methylotrophiycus. Enzymatic activity related to the antifungal activity of the six potent isolates was determined; it showed that they possessed high chitinase and protease activities. These isolates were applied for black pepper seedlings in greenhouse. The results showed three promising isolates: B. siamensis EB.CP6, B. velezensis EB.KN12, and B. methylotrophycus EB.KN13. Black pepper seedlings treated with the promising bacteria had the lowest rate of root disease (8.45–11.21%) and lower fatal rate (11.11–15.55%) compared to the control group (24.81% and 24.44%). In addition, the three promising isolates strongly affected the growth of the black pepper seedlings in greenhouse. The plant height, length of roots, and fresh biomass of the seedlings in the treated plots were higher than those in the control plots. Thus, the endophytic bacterial isolates have the potential to act as biocontrol agent for the sustainable production of black pepper.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1503
Author(s):  
Carla Guijarro-Real ◽  
Mariola Plazas ◽  
Adrián Rodríguez-Burruezo ◽  
Jaime Prohens ◽  
Ana Fita

Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL−1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL−1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL−1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.


Author(s):  
Grazielle Oliveira ◽  
Caroline Marques ◽  
Anielle de Oliveira ◽  
Amanda de Almeida dos Santos ◽  
Wanderlei do Amaral ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Priyanjali Bhattacharya ◽  
Trupti N. Patel

AbstractPlant derived products have steadily gained momentum in treatment of cancer over the past decades. Curcuma and its derivatives, in particular, have diverse medicinal properties including anticancer potential with proven safety as supported by numerous in vivo and in vitro studies. A defective Mis-Match Repair (MMR) is implicated in solid tumors but its role in haematologic malignancies is not keenly studied and the current literature suggests that it is limited. Nonetheless, there are multiple pathways interjecting the mismatch repair proteins in haematologic cancers that may have a direct or indirect implication in progression of the disease. Here, through computational analysis, we target proteins that are involved in rewiring of multiple signaling cascades via altered expression in cancer using various curcuma derivatives (Curcuma longa L. and Curcuma caesia Roxb.) which in turn, profoundly controls MMR protein function. These biomolecules were screened to identify their efficacy on selected targets (in blood-related cancers); aberrations of which adversely impacted mismatch repair machinery. The study revealed that of the 536 compounds screened, six of them may have the potential to regulate the expression of identified targets and thus revive the MMR function preventing genomic instability. These results reveal that there may be potential plant derived biomolecules that may have anticancer properties against the tumors driven by deregulated MMR-pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adeyemi T. Kayode ◽  
Fehintola V. Ajogbasile ◽  
Kazeem Akano ◽  
Jessica N. Uwanibe ◽  
Paul E. Oluniyi ◽  
...  

AbstractIn 2005, the Nigerian Federal Ministry of Health revised the treatment policy for uncomplicated malaria with the introduction of artemisinin-based combination therapies (ACTs). This policy change discouraged the use of Sulphadoxine-pyrimethamine (SP) as the second-line treatment of uncomplicated falciparum malaria. However, SP is used as an intermittent preventive treatment of malaria in pregnancy (IPTp) and seasonal malaria chemoprevention (SMC) in children aged 3–59 months. There have been increasing reports of SP resistance especially in the non-pregnant population in Nigeria, thus, the need to continually monitor the efficacy of SP as IPTp and SMC by estimating polymorphisms in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes associated with SP resistance. The high resolution-melting (HRM) assay was used to investigate polymorphisms in codons 51, 59, 108 and 164 of the dhfr gene and codons 437, 540, 581 and 613 of the dhps gene. DNA was extracted from 271 dried bloodspot filter paper samples obtained from children (< 5 years old) with uncomplicated malaria. The dhfr triple mutant I51R59N108, dhps double mutant G437G581 and quadruple dhfr I51R59N108 + dhps G437 mutant haplotypes were observed in 80.8%, 13.7% and 52.8% parasites, respectively. Although the quintuple dhfr I51R59N108 + dhps G437E540 and sextuple dhfr I51R59N108 + dhps G437E540G581 mutant haplotypes linked with in-vivo and in-vitro SP resistance were not detected, constant surveillance of these haplotypes should be done in the country to detect any change in prevalence.


2016 ◽  
Vol 115 (7) ◽  
pp. 2637-2645 ◽  
Author(s):  
Ahmad K. Dyab ◽  
Doaa A. Yones ◽  
Zedan Z. Ibraheim ◽  
Tasneem M. Hassan

Sign in / Sign up

Export Citation Format

Share Document