scholarly journals Analisis dan Optimasi Pengaruh Suhu Gas Umpan Pada Kinerja Acid Gas Removal Unit

2021 ◽  
Vol 1 ◽  
pp. 67-74
Author(s):  
Iwan Febrianto ◽  
Nelson Saksono

The Gas Gathering Station (GGS) in field X processes gas from 16 (sixteen) wells before being sent as selling gas to consumers. The sixteen wells have decreased in good pressure since 2011, thus affecting the performance of the Acid Gas Removal Unit (AGRU). The GGS consists of 4 (four) main units, namely the Manifold Production/ Test, the Separation Unit, the Acid Gas Removal Unit (AGRU), the Dehydration Unit (DHU). The AGRU facility in field X is designed to reduce the acid gas content of CO2 by 21 mol% with a feed gas capacity of 85 MMSCFD. A decrease in reservoir pressure caused an increase in the feed gas temperature and an increase in the water content of the well. Based on the reconstruction of the design conditions into the simulation model, the amine composition consisting of MDEA 0.3618 and MEA 0.088 wt fraction to obtain the percentage of CO2 in the 5% mol sales gas. The increase in feed gas temperature up to 146 F caused foaming due to condensation of heavy hydrocarbon fraction, so it was necessary to modify it by adding a chiller to cool the feed gas to become 60 F. Based on the simulation, the flow rate of gas entering AGRU could reach 83.7 MMSCFD. There was an increase in gas production of 38.1 MMSCFD and condensate of 1,376 BPD. Economically, the addition of a chiller modification project was feasible with the economical parameters of NPV US$ 132,000,000, IRR 348.19%, POT 0.31 year and PV ratio 19.06.

2020 ◽  
Vol 38 (1-2) ◽  
pp. 3-23 ◽  
Author(s):  
Yang Zhao ◽  
Xiaodong Zhang ◽  
Shuo Zhang ◽  
Jiaosheng Yang ◽  
Xianzhong Li ◽  
...  

Adsorption and desorption of coalbed methane are generally at a dynamic equilibrium state under the undisturbed coal reservoir. However, as the reservoir pressure drops to a certain value during the extraction of coalbed methane, the equilibrium state is destroyed and thus more coalbed methane desorbs and escapes from coal to wellbore. Here the corresponding bottom-hole fluid pressure is called initial gas production pressure (IGPP) in the development practice of coalbed methane wells. This paper, which has taken Changzhi-Anze block in the central-southern part of Qinshui basin as the study object, addresses the distribution characteristic and control factors of IGPP of coalbed methane wells and then explores the key factors affecting IGPP using grey correlation analysis theory. The results indicate that IGPP varies from 1.09 MPa to 6.57 MPa, showing a distribution law with high in the middle and low in the west and east of the study area, which presents a similar distribution characteristic with burial depth, thickness, coal rank, gas content, original reservoir pressure, and in-situ stress. Further, through grey correlation analysis, it concludes that the correlation degrees of control factors affecting IGPP of coalbed methane wells in the descending order are decline rate of working fluid level, water yield before gas production, reservoir pressure, coal thickness, coal rank, minimum horizontal principal stress, burial depth, and gas content. Among these factors, engineering factors, including decline rate of working fluid level and water yield before gas production, present a key controlling effect, because they can determine the smooth migration pathway directly during initial water production. And another key factor, original reservoir pressure also builds strong and positive correlation with IGPP under the interaction of other geology and reservoir factors, revealing the capability of gas desorption and the transmission of pressure drops.


2021 ◽  
Vol 2 (2) ◽  
pp. 68
Author(s):  
Indah Widiyaningsih ◽  
Panca Suci Widiantoro ◽  
Suwardi Suwardi ◽  
Riska Fitri Nurul Karimah

The RF reservoir is a dry gas reservoir located in Northeast java offshore that has been produced since 2018.  The RF reservoir has produced 2 wells with cumulative production until December 2019 is 31.83 BSCF. In January 2018 the gas production rate from the two wells was 36 MMSCFD and the reservoir pressure at the beginning of production was 2449.5 psia, peak production occurred in April 2019 with a gas flow rate of 98 MMSCFD but in December 2019 the gas production rate from both wells decreased to 30 MMSCFD with reservoir pressure decreased to 1607.8 psia. Changes in gas flow rate and pressure in the RF reservoir will affect changes in reservoir performance, so it is necessary to analyze reservoir performance to determine reservoir performance in the future with the material balance method. Based on the results the initial gas in place (IGIP) is 80.08 BSCF. The drive mechanism worked on the RF reservoir until December 2019 was a depletion drive with a recovery factor up to 88% and a current recovery factor (CRF) is 40%. The remaining gas reserves in December 2019 is 39 BSCF and the reservoir will be made a production prediction until December 2032. Based on production predictions of the four scenarios, scenario 2 was chosen as the best scenario to develop the RF reservoir with a cumulative production is 66.1 BSCF and a recovery factor of 82.6%.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Ibrahim M. Mohamed ◽  
Gareth I. Block ◽  
Omar A. Abou-Sayed ◽  
Salaheldin M. Elkatatny ◽  
Ahmed S. Abou-Sayed

Reinjection is one of the most important methods to dispose fluid associated with oil and natural gas production. Disposed fluids include produced water, hydraulic fracture flow back fluids, and drilling mud fluids. Several formation damage mechanisms are associated with the injection including damage due to filter cake formed at the formation face, bacteria activity, fluid incompatibility, free gas content, and clay activation. Fractured injection is typically preferred over matrix injection because a hydraulic fracture will enhance the well injectivity and extend the well life. In a given formation, the fracture dimensions change with different injection flow rates due to the change in injection pressures. Also, for a given flow rate, the skin factor varies with time due to the fracture propagation. In this study, well test and injection history data of a class II disposal well in south Texas were used to develop an equation that correlates the skin factor to the injection flow rate and injection time. The results show that the skin factor decreases with time logarithmically as the fracture propagates. At higher injection flow rates, the skin factor achieved is lower due to the larger fracture dimensions that are developed at higher injection flow rates. The equations developed in this study can be applied for any water injector after calibrating the required coefficients using injection step rate test (SRT) data.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 413
Author(s):  
Ahmed W. Ameen ◽  
Peter M. Budd ◽  
Patricia Gorgojo

Superglassy polymers have emerged as potential membrane materials for several gas separation applications, including acid gas removal from natural gas. Despite the superior performance shown at laboratory scale, their use at industrial scale is hampered by their large drop in gas permeability over time due to physical aging. Several strategies are proposed in the literature to prevent loss of performance, the incorporation of fillers being a successful approach. In this work, we provide a comprehensive economic study on the application of superglassy membranes in a hybrid membrane/amine process for natural gas sweetening. The hybrid process is compared with the more traditional stand-alone amine-absorption technique for a range of membrane gas separation properties (CO2 permeance and CO2/CH4 selectivity), and recommendations for long-term membrane performance are made. These recommendations can drive future research on producing mixed matrix membranes (MMMs) of superglassy polymers with anti-aging properties (i.e., target permeance and selectivity is maintained over time), as thin film nanocomposite membranes (TFNs). For the selected natural gas composition of 28% of acid gas content (8% CO2 and 20% H2S), we have found that a CO2 permeance of 200 GPU and a CO2/CH4 selectivity of 16 is an optimal target.


2021 ◽  
Vol 6 (2) ◽  
pp. 81
Author(s):  
Muhrinsyah Fatimura ◽  
Rully Masriatini ◽  
Reno Fitriyanti

Gas CO2 atau gas asam (sour gas) merupakan salah satu kandungan dari gas alam yang sifatnya sebagai kontaminan. Adanya kandungan gas CO2 yang tinggi didalam gas alam perlu dilakukan treatment khusus dalam menghilangan kandungan gas asam (sour gas) tersebut dari gas alam dimana proses penghilangan gas asam dari gas alam disebut proses Sweetening. Proses Absorspi gas CO2 merupakan metode yang sering dilakukan. Penelitian ini bertujuan  mengetahui pengaruh laju alir absorben dan waktu kontak terhadap konsentrasi CO2 yang di serap. Metode yang dilakukan dalam penelitian ini yaitu dengan perancangan alat yang bisa menunujukan proses absorpsi CO2. Variabel penelitian yang digunakan memvariasikan  laju alir absorben 4,95 ml/s, 7,26 ml/s, 10,75 ml/s serta waktu kontak 2,4,6,8 menit dengan menggunakan absorben K2CO3 dan   Gas alam yang digunakan compress Natural Gas CNG.  Dari hasil penelitan laju alir Absorbenyang paling baik didapat pada  10,75 ml/s dengan penyerapan  CO2 sebesar  69,45 %. Waktu kontak  pada setiap waktu   tidak berpengaruh banyak  terhadap konsentarsi CO2 yang terserap .  Kata kunci: absorben, Sour gas, gas alam, laju alir  AbstractCO2 gas or acid gas (sour gas) is one of the contents of natural gas which is a contaminant. The presence of high CO2 gas content in natural gas requires special treatment to remove the sour gas content from natural gas where the process of removing acid gas from natural gas is called the Sweetening process. The CO2 gas absorption process is a method that is often used. This study aims to determine the effect of absorbent flow rate and contact time on the absorbed CO2 concentration. The method used in this research is to design a tool that can show the CO2 absorption process. The research variables used varied the absorbent flow rate of 4.95 ml/s, 7.26 ml/s, 10.75 ml/s and a contact time of 2,4,6,8 minutes using K2CO3 absorbent and natural gas used compressed Natural CNG gas. From the research results, the best absorbent flow rate was obtained at 10.75 ml/s with CO2 absorption of 69.45%. Contact time at any time did not have much effect on the concentration of CO2 absorbed. Keywords: absorbent, sour gas, natural gas, flow rate


2014 ◽  
Vol 962-965 ◽  
pp. 21-28
Author(s):  
Bei Liu ◽  
Wei Hua Ao ◽  
Wen Hui Huang ◽  
Qi Lu Xu ◽  
Juan Teng

Coalbed methane (CBM) productivity is influenced by various factors. Based on field production data and test data of southern Qinshui Basin, factors including geological factors, engineering factors and drainage factors that affect CBM productivity are analyzed. Analytic hierarchy process (AHP) is introduced to calculate the contribution of each parameter to CBM productivity. A three-level model for evaluating CBM productivity based on AHP is established. The results show that average daily gas production of single well in southern Qinshui Basin increases with gas content, coal seam thickness, permeability, porosity, gas saturation, critical desorption pressure. Filling minerals in pores and fractures of coal can decrease gas content, porosity and permeability of coal reservoir. When burial depth is deeper than 500m or reservoir pressure is greater than 2MPa and burial depth is shallower than 1000m or reservoir pressure is less than 10MPa, CBM productivity is relatively high. According to the calculation, the weight of geological factors, engineering factors and drainage factors are 50%, 25% and 25%, respectively. Reservoir physical properties, geological conditions, fracturing technology and drainage process have the most impact, the weight of which are 33.33%, 16.67%, 11.79%, and 15.00%, respectively.


2016 ◽  
Author(s):  
Perdu Gauthier ◽  
Salais Clément ◽  
Carlier Vincent ◽  
Prosernat S. A Weiss Claire ◽  
Maubert Thomas ◽  
...  
Keyword(s):  
Acid Gas ◽  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Umer Zahid

AbstractMost of the industrial acid gas removal (AGR) units employ chemical absorption process for the removal of acid gases from the natural gas. In this study, two gas processing plants operational in Saudi Arabia have been selected where two different amines n1amely, diglycolamine (DGA) and monoethanol amine (MDEA) are used to achieve the sweet gas purity with less than 4 ppm of H2S. This study performed a feasibility simulation of AGR unit by utilizing the amine blend (DGA+MDEA) for both plants instead of a single amine. The study used a commercial process simulator to analyze the impact of process variables such as amine circulation rate, amine strength, lean amine temperature, regenerator inlet temperature, and absorber and regenerator pressure on the process performance. The results reveal that when the MDEA (0–15 wt. %) is added to DGA, marginal energy savings can be achieved. However, significant operational energy savings can be made when the DGA (0–15 wt. %) is blended with MDEA being the main amine.


2015 ◽  
Vol 50 (1) ◽  
pp. 29-38 ◽  
Author(s):  
MS Shah ◽  
HMZ Hossain

Decline curve analysis of well no KTL-04 from the Kailashtila gas field in northeastern Bangladesh has been examined to identify their natural gas production optimization. KTL-04 is one of the major gas producing well of Kailashtila gas field which producing 16.00 mmscfd. Conventional gas production methods depend on enormous computational efforts since production systems from reservoir to a gathering point. The overall performance of a gas production system is determined by flow rate which is involved with system or wellbore components, reservoir pressure, separator pressure and wellhead pressure. Nodal analysis technique is used to performed gas production optimization of the overall performance of the production system. F.A.S.T. Virtu Well™ analysis suggested that declining reservoir pressure 3346.8, 3299.5, 3285.6 and 3269.3 psi(a) while signifying wellhead pressure with no changing of tubing diameter and skin factor thus daily gas production capacity is optimized to 19.637, 24.198, 25.469, and 26.922 mmscfd, respectively.Bangladesh J. Sci. Ind. Res. 50(1), 29-38, 2015


Sign in / Sign up

Export Citation Format

Share Document