scholarly journals PENGARUH LAJU ALIR ABSORBEN DAN WAKTU KONTAK K2CO3 TERHADAP PENYERAPAN CO2 YANG TERKANDUNG DALAM GAS ALAM

2021 ◽  
Vol 6 (2) ◽  
pp. 81
Author(s):  
Muhrinsyah Fatimura ◽  
Rully Masriatini ◽  
Reno Fitriyanti

Gas CO2 atau gas asam (sour gas) merupakan salah satu kandungan dari gas alam yang sifatnya sebagai kontaminan. Adanya kandungan gas CO2 yang tinggi didalam gas alam perlu dilakukan treatment khusus dalam menghilangan kandungan gas asam (sour gas) tersebut dari gas alam dimana proses penghilangan gas asam dari gas alam disebut proses Sweetening. Proses Absorspi gas CO2 merupakan metode yang sering dilakukan. Penelitian ini bertujuan  mengetahui pengaruh laju alir absorben dan waktu kontak terhadap konsentrasi CO2 yang di serap. Metode yang dilakukan dalam penelitian ini yaitu dengan perancangan alat yang bisa menunujukan proses absorpsi CO2. Variabel penelitian yang digunakan memvariasikan  laju alir absorben 4,95 ml/s, 7,26 ml/s, 10,75 ml/s serta waktu kontak 2,4,6,8 menit dengan menggunakan absorben K2CO3 dan   Gas alam yang digunakan compress Natural Gas CNG.  Dari hasil penelitan laju alir Absorbenyang paling baik didapat pada  10,75 ml/s dengan penyerapan  CO2 sebesar  69,45 %. Waktu kontak  pada setiap waktu   tidak berpengaruh banyak  terhadap konsentarsi CO2 yang terserap .  Kata kunci: absorben, Sour gas, gas alam, laju alir  AbstractCO2 gas or acid gas (sour gas) is one of the contents of natural gas which is a contaminant. The presence of high CO2 gas content in natural gas requires special treatment to remove the sour gas content from natural gas where the process of removing acid gas from natural gas is called the Sweetening process. The CO2 gas absorption process is a method that is often used. This study aims to determine the effect of absorbent flow rate and contact time on the absorbed CO2 concentration. The method used in this research is to design a tool that can show the CO2 absorption process. The research variables used varied the absorbent flow rate of 4.95 ml/s, 7.26 ml/s, 10.75 ml/s and a contact time of 2,4,6,8 minutes using K2CO3 absorbent and natural gas used compressed Natural CNG gas. From the research results, the best absorbent flow rate was obtained at 10.75 ml/s with CO2 absorption of 69.45%. Contact time at any time did not have much effect on the concentration of CO2 absorbed. Keywords: absorbent, sour gas, natural gas, flow rate

ACS Omega ◽  
2021 ◽  
Author(s):  
Nasrin Salimi Darani ◽  
Reza Mosayebi Behbahani ◽  
Yasaman Shahebrahimi ◽  
Afshin Asadi ◽  
Amir H. Mohammadi

EKOLOGIA ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 45-51
Author(s):  
. Sutanto ◽  
Ade Heri Mulyati ◽  
. Hermanto

Drilling natural gas contains water vapor (H2O) and contaminant gases such as CO2 and H2S which must be removed because it reduced the calorie value of the product. H2S gas is also corrosive, easily damaging equipment so that it increased maintenance costs. The process of removing CO2 and H2S gas uses MDEA (methyl diethanolamine). This study aims to determine the optimal concentration and flow rate of absorbent methyl diethanolamine (MDEA) to absorb H2S in the plant I gas flow in Energy Equity Epic (Sengkang) Pty.Ltd. The study was carried out with a steady MDEA mix absorbent flow rate (50% pure amine and 50% demineralization water) fixed at 13 US Gallons per minute flowing continuously at the upper absorber inlet, sour gas flow rate, at the bottom of the absorber inlet with variations in the flow gas namely 7,9,11,13,15,17 MMSCFD and is contacted with amine solution counter-current. Purified natural gas (sweet gas) produced from the top absorber column outlet with an H2S content below 10 ppm. The results showed that the greater the flow rate of gas inlet, the greater the acid gas absorbed. The  amount  of gas  entering and  exiting gas follows the  equation        y = 0.003 x - 2.2537. The ability of the amine solution to absorb H2S follows the logarithmic equation y = 0.167 ln (x) + 101.02 with a value of R = 0.9857, y is H2S absorbed by the amine solution and x is the H2S rate.


2021 ◽  
Vol 1 ◽  
pp. 67-74
Author(s):  
Iwan Febrianto ◽  
Nelson Saksono

The Gas Gathering Station (GGS) in field X processes gas from 16 (sixteen) wells before being sent as selling gas to consumers. The sixteen wells have decreased in good pressure since 2011, thus affecting the performance of the Acid Gas Removal Unit (AGRU). The GGS consists of 4 (four) main units, namely the Manifold Production/ Test, the Separation Unit, the Acid Gas Removal Unit (AGRU), the Dehydration Unit (DHU). The AGRU facility in field X is designed to reduce the acid gas content of CO2 by 21 mol% with a feed gas capacity of 85 MMSCFD. A decrease in reservoir pressure caused an increase in the feed gas temperature and an increase in the water content of the well. Based on the reconstruction of the design conditions into the simulation model, the amine composition consisting of MDEA 0.3618 and MEA 0.088 wt fraction to obtain the percentage of CO2 in the 5% mol sales gas. The increase in feed gas temperature up to 146 F caused foaming due to condensation of heavy hydrocarbon fraction, so it was necessary to modify it by adding a chiller to cool the feed gas to become 60 F. Based on the simulation, the flow rate of gas entering AGRU could reach 83.7 MMSCFD. There was an increase in gas production of 38.1 MMSCFD and condensate of 1,376 BPD. Economically, the addition of a chiller modification project was feasible with the economical parameters of NPV US$ 132,000,000, IRR 348.19%, POT 0.31 year and PV ratio 19.06.


2018 ◽  
Vol 9 (2) ◽  
pp. 42
Author(s):  
S Setiadi ◽  
Dijan Supramono ◽  
Nur Istiqomah

Efforts to improve the performance of CO2 absorption using bubbling columns and liquid jet flow have consistently been developed. The advantage of the present column is the presence of gas entrainment by suction of nozzle and the gas dispersed throughout the bulk of liquid by the formation of bubble clouds. The selection of liquid jet flow configuration used parameters of nozzle position and liquid jet inclination. The configurations have been examined by hydrodynamic test by measuring the ratio of volumetric rate of gas to that of liquid exiting nozzle (QG/QL) and gas holdup. Absorption test to the best configuration used NaOH solution with flowrate of 5 litres/min at atmospheric pressure and CO2 gas feed of 96.6%. The results showed that the configurations of liquid jet flow gave significant effect on hydrodynamics and that the best configurations had gas hold-up in the range of 0.55-0.6 and QG/QL 1.3-1.8. Absorption tests showed that CO2 concentration can be reduced into 0.01%-0.07% in less than five minutes and the absorption should proceed with the chemical reaction up to 10 minutes with no indication of CO2 desorption. The bubbles were generated in the column predominantly in the diameter range of 0.00097-0.00184 mm.Keywords: Configurations of liquid jet, bubble column, gas entrainment, CO2 gas absorption AbstrakUpaya meningkatkan kinerja absorpsi gas CO2 yang memanfaatkan kolom gelembung dan liquid jet flow telah banyak dilakukan. Keunggulan kolom gelembung dalam riset ini adalah kolom menyebabkan gas entrainment (pengisapan gas) dan dispersi gas ke dalam cairan yang membentuk awan gelembung. Pemilihan konfigurasi liquid jet flow terbaik berdasarkan posisi nosel dan arah sudut tembakannya dan dengan mengukur rasio laju volumetrik aliran gas entrainment terhadap laju volumetrik aliran cairan (QG/QL) serta gas hold-up untuk setiap konfigurasi. Konfigurasi terbaik digunakan untuk menentukan kinerja kolom gelembung untuk mendapatkan kinerja kemampuan absorpsi yang setinggi-tingginya. Uji absorpsi dilakukan terhadap konfigurasi terbaik dengan menggunakan absorben larutan NaOH dengan laju alir 5 L/min pada tekanan atmosferik dan umpan gas CO2 dengan kadar 96,6%. Hasil penelitian menunjukkan bahwa konfigurasi memberikan pengaruh cukup signifikan dan bahwa konfigurasi terbaik memberikan gas hold-up kisaran 0,55-0,65 dan rasio QG/QL bernilai 1,3-1,8. Uji absorpsi menunjukkan berkurangnya kadar CO2 menjadi 0,01% hingga 0,07% setelah absorpsi kurang dari 5 menit dan tetap tidak berubah sampai 10 menit. Hal ini menandakan bahwa absorpsi terjadi secara kimiawi antara gas CO2 dan NaOH and tidak terjadi desorpsi walaupun kolom gelembung tetap resirkulasi. Populasi gelembung menunjukkan distribusi ukuran gelembung lebih dominan pada rentang diameter antara 0,00097-0,00184 mm.Kata Kunci: Konfigurasi liquid jet, kolom gelembung, gas entrainment, absorpsi gas CO2


2018 ◽  
Vol 11 (1) ◽  
pp. 17
Author(s):  
Erlinda Ningsih ◽  
Lily Pudjiastuti ◽  
Dessy Wulansari ◽  
Nurul Anggraheny ◽  
Ali Altway ◽  
...  

Simulation of multi-component gas absorption in the K2CO3 solution with promoter MDEA in packed column This research aims to study theoretically the performance of packed column to absorb CO2 and H2S from acid gas using MDEA promoted K2CO3 solution by considering solubility of other gases. Performance is expressed as CO2 recovery percentage. Research was carried out by developing simulation program of gases absorption with chemical reaction in packed column under isotherm condition. Prediction results were validated with petrochemical plant data. The simulation program can predict concentration distribution of dissolved gases and reactants in liquid phase at packed column and also the percentage of CO2 and H2S recovery. Results show that CO2 and H2S recovery increase with the increasing pressure and liquid flow rate. The study also depicts presence of an optimum temperature where CO2 recovery increases with increasing temperature below optimum temperature and decrease with increasing temperature above optimum temperature. The absorption rate increase or decrease with increasing temperature depending on relative effect of temperature on reaction rate, gas diffusivity and solubility. For CO2 absorption into MDEA promoted 30% K2CO3 solution at packed column 3 m in diameter, and 30 m in height filled with 7 cm IMPT packing, the highest CO2 removal efficiency is 99.947% on 100 oC, 32 atm, liquid flow rate of 5900 m3/hr, and gas flow rate of 308 kNm3/hr. Keywords: reactive absorption, isothermal, multi-component, promoter, two-film modelAbstrakPenelitian ini bertujuan untuk mempelajari secara teoritis kinerja packed column untuk absorpsi CO2 dan H2S dari gas asam dengan larutan K2CO3 dan promotor MDEA dengan memperhatikan kelarutan gas-gas yang lain, yang dinyatakan dengan %-recovery CO2. Penelitian ini dilaksanakan dengan membuat program simulasi untuk absorpsi gas CO2 disertai reaksi kimia dalam kondisi isothermal. Hasil prediksi simulasi ini divalidasi dengan data lapangan. Dengan menggunakan model packed column ini, diperoleh distribusi konsentrasi gas-gas terlarut, distribusi konsentrasi reaktan dalam fasa cair dalam kolom absorber dan prediksi %-recovery CO2 dan H2S. Hasil penelitian menunjukkan bahwa semakin tinggi tekanan dan laju alir absorben %-penghilangan CO2 dan H2S semakin besar. Hasil penelitian menunjukkan adanya suhu optimum. Di bawah suhu optimum kenaikan suhu menyebabkan kenaikan %-penghilangan sedangkan di atas suhu optimum kenaikan suhu menurunkan %-penghilangan. Laju absorpsi meningkat tergantung pada pengaruh relatif temperatur pada konstanta kecepatan reaksi, difusivitas dan kelarutan gas yang terserap. Untuk absorpsi gas CO2 kedalam larutan K2CO3 30% dengan promotor MDEA pada packed column dengan diameter 3 m dan tinggi 30 m yang diisi dengan packing IMPT 7 cm diperoleh penghilangan CO2 tertinggi 99,947% pada kondisi laju alir larutan 5900 m3/jam, temperatur 100 oC, laju alir gas 308 kNm3/jam serta tekanan 32 atm.Kata kunci: absorpsi reaktif, isothermal, multikomponen, promoter, model dua film.


Author(s):  
Purnomosutji Dyah Prinajati

Greenhouse Gases (GHG) consists of various types of gases that are produced either naturally from the environment or from the activities of living things, some examples of the dominant GHGs are water vapor, carbon dioxide (CO2), methane (CH4), nitrogen oxides (NOx) and Sulfur Oxide (SOx), the largest contributors to GHG emissions are in the Energy sector, amounting to 175.62 million tons of CO2. Microalgae are the most primitive plants, can grow in low water quality with the availability of adequate nutrients and sunlight. The amount of CO2 that can be absorbed by 1 kg of dry spirulina is 1.83 kg of CO2. In addition, Spirulina Platensis can tolerate gas content of SOx, NOx and CO2 whose concentrations are <12%. This study aims to determine the process of utilizing CO2 gas emissions from power plant for the cultivation of Spirulina Platensis microalgae at PT. Indonesia Power UPJP Perak Grati. Based on the research results, the average emission load value generated from power plant, especially HRSG 1.1, is 10,403.31 tons CO2/ month on average. The temperature factor has a significant correlation with the growth of microalgae cells with an inverse correlation. Based on the tests carried out to determine the relationship between changes in the flow rate of CO2 in microalgae cultivation ponds to the growth of microalgae cells, it was found that the addition of CO2 in the cultivation pond with a flow rate of 1 L/ minute had a greater effect than other treatments. The amount of CO2 absorption by microalgae installations with a flow rate variation of 1 liter CO2/ minute is able to absorb 0.2766 tons of CO2/ month, or is only capable of <1% of the average emission load of HRSG 1.1 per month.


Author(s):  
Yanmin Zhou ◽  
Zhongning Sun ◽  
Haifeng Gu ◽  
Junlong Wang ◽  
Zhuang Miao

The characteristics of gas methyl iodide removed by containment filter venting system is similar with bubble column reactor, this study is focused on the absorption performance of methyl iodide in a bubble column reactor with experiment and mathematical calculations, the alkalescent sodium thiosulphate solution in a scale-up facility is used as absorber in the research. The results show that the gas methyl iodide removal efficiency is mainly influenced by the temperature of solution, system pressure, gas flow rate and liquid level respectively. In the range of 0∼80°C, the removal efficiency improve obviously with increasing temperature, while the chemical reaction process is a major factor that limiting the removal efficiency, when the temperature is higher than 80°C, the efficiency is no longer sensitive to the variation of temperature and the mass transfer process become the main limiting factors. The increase of system pressure and height of solution can enhance gas absorption process significantly, the removal efficiency improve linearly with the two parameters. However, the gas volume flow rate plays an opposite role on absorption process mainly because of the reducing on contacting time. In addition, the variation of entrance concentration has a little impact on removal efficiency. The mathematical calculations of removal efficiency fit well with experimental results in the bubble column reactor.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 413
Author(s):  
Ahmed W. Ameen ◽  
Peter M. Budd ◽  
Patricia Gorgojo

Superglassy polymers have emerged as potential membrane materials for several gas separation applications, including acid gas removal from natural gas. Despite the superior performance shown at laboratory scale, their use at industrial scale is hampered by their large drop in gas permeability over time due to physical aging. Several strategies are proposed in the literature to prevent loss of performance, the incorporation of fillers being a successful approach. In this work, we provide a comprehensive economic study on the application of superglassy membranes in a hybrid membrane/amine process for natural gas sweetening. The hybrid process is compared with the more traditional stand-alone amine-absorption technique for a range of membrane gas separation properties (CO2 permeance and CO2/CH4 selectivity), and recommendations for long-term membrane performance are made. These recommendations can drive future research on producing mixed matrix membranes (MMMs) of superglassy polymers with anti-aging properties (i.e., target permeance and selectivity is maintained over time), as thin film nanocomposite membranes (TFNs). For the selected natural gas composition of 28% of acid gas content (8% CO2 and 20% H2S), we have found that a CO2 permeance of 200 GPU and a CO2/CH4 selectivity of 16 is an optimal target.


REAKTOR ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Hadiyanto Hadiyanto ◽  
W Widayat

Mikroalga memiliki potensi dalam membiofiksasi CO2 dan dapat dimanfaatkan untuk mengurangi kadar CO2 dalam gas pencemar. Pertumbuhan mikroalga sangat dipengaruhi oleh konsentrasi gas CO2 di dalam gas pencemar. Tujuan penelitian ini adalah untuk mengeetahui kemampuan mikroalga Chlamydomonas sp yang dikultivasi dalam photobioreaktor tubular dalam penyerapan gas CO2 serta untuk mengetahui konsentrasi maksimum gas CO2 dalam umpan untuk memproduksi biomasa mikroalga yang optimal. Percobaan dilakukan dnegan memvariasi laju alir dari 0.03 -0.071 L/menit dan konsentrasi CO2 dalam umpan 10-30%. Hasil penelitian menunjukkan bahwa biomasa mikroalga dapat diproduksi dengan maksimal dengan konsentrasi gas CO2 20% dengan laju alir 0.07 L/min. Semakin tinggi laju alir maka produksi biomasa alga semakin besar. Kecepatan pertumbuhan alga maksimum terjadi pada 0.31 /hari. Pada konsentrasi gas CO2 30%, terjadi substrate inhibition yang disebabkan carbon dalam bentuk ion bicarbonate tidak dapat dikonsumsi lagi di dalam kultur alga. Kata kunci : Mikroalga, chlamydomonas sp, biofiksasi CO2, biogas Abstract Microalgae have a potential for CO2 biofixation and therefore can be used to reduce the CO2 concentration in the gas pollutants. Moreover, microalgae growth is strongly affected by the concentration of CO2 in the exhaust gas pollutants. The objective of this research was to investigate the ability of microalgae Chlamydomonas sp which was cultivated in a tubular photobioreactor for CO2 absorption as well as to determine the maximum concentration of CO2 in the feed gas to obtain optimum microalgae biomass. The experiments were performed by varying the gas flow rate of 0.03 -0.071 L / min and the concentration of CO2 in the feed of 10-30%. The results showed that the maximum biomass of microalgae can be produced with CO2 concentration of 20% vol with a flow rate of 0.07 L / min. The result also showed that increasing the gas flow rate, the greater of the production of algal biomass and the maximum algae growth rate occurred at 0.31 / day. At a concentration of 30% CO2 gas, it occurs a substrate inhibition due to inefficient of bicarbonate use by algae culture.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nayef Ghasem

AbstractNatural gas is one of the main sources of energy. It contains mainly methane and less percentage of impurity compound (CO2, H2S, and N2). The existence of these undesired impurity compounds in natural gas are not needed, because the presence of the acid gases in natural gas can cause corrosion and lowering the heating value in addition to their hazardous nature. The compound severely influenced human health and cause global warming. Accordingly, the capture of the acid gases species (i. e., CO2, H2S) from natural gas is essential. There are many techniques used for this purpose, hollow fiber polymeric membrane is a promising technique for this purpose. In this article, a numerical model is developed to study the effect of membrane contacting process with diverse fiber bore diameters on the percent removal of CO2 from a gas mixture by means of aqueous MEA/water solution as a scrubbing solvent. The developed model is validated utilizing data available in literature. The verified model is used to investigate the effect of flow rate of liquid and gas, and membrane total contact area on the CO2 removal efficiency. Results revealed that, membrane bore diameter and liquid flow rate have strong impact on the percent removal of CO2. The membrane with smaller bore diameter performs better than the other modules with greater diameter.


Sign in / Sign up

Export Citation Format

Share Document