Separation of oil emulsion using polyacrylonitrile membranes, modified by corona discharge

2020 ◽  
pp. 30-37
Author(s):  
I. G. Shaikhiev ◽  
◽  
V. O. Dryakhlov ◽  
M. F. Galikhanov ◽  
D. D. Fazullin ◽  
...  

It is investigated the influence of the parameters of the unipolar corona discharge (the treatment time, voltage) on the performance and selectivity of separation of model emulsions “oil in water” based on the oil in the Devonian deposits Tomatocage field (Republic of Tatarstan) using polyacrylonitrile membranes with a molecular weight cut-off of 60 kDa particles. Determined COD values of the original emulsions and filtrates. The values of the processing time (30 seconds) and voltage of the corona (5 kV) membranes, which achieved the best performance and selectivity of the separation process of oil-water emulsion. Sitting drop methods, x-ray diffraction and atomic force microscopy showed changes of the surface structure and internal structure of treated membrane. In particular, there was decrease in the wetting angle from 45.1 to 43.3 and an increase in the degree of crystallinity from 0.15 to 0.18, which is due to the flow on the surface of PES membrane processes of etching and oxidation resulting from exposure to a unipolar corona discharge ozone, which is also confirmed by images of the surface of the filter elements and the histograms of the topography, based on which it showed a decrease in height and number of protrusions from 42 nm and 7500 to 10 nm and 2500.

1995 ◽  
Vol 395 ◽  
Author(s):  
J.C. Ramer ◽  
K. Zheng ◽  
C.F. Kranenberg ◽  
M. Banas ◽  
S.D Hersee

ABSTRACTUsing atomic force microscopy (AFM) and X-ray diffraction (XRD) we have determined that on [0001] oriented sapphire, the GaN buffer layer shows a degree of crystallinity that is dependent on growth rate. Annealing studies show evolution of the crystallinity and the emergence of a preferred orientation. Also, substrate orientation is found to influence the buffer layer crystallinity. Based on this work and previous results, we propose that the GaN buffer layer growth can be described by the Stranski-Krastanov growth process.


2007 ◽  
Vol 1008 ◽  
Author(s):  
Zhendong Hong ◽  
Alexandre Mello ◽  
Tomohiko Yoshida ◽  
Lan Luan ◽  
Paula H. Stern ◽  
...  

AbstractHydroxyapatite coatings have been widely recognized for their biocompatibility and utility in promoting biointegration of implants in both osseous and soft tissue. Conventional sputtering techniques have shown some advantages over the commercially available plasma spraying method; however, the as-sputtered coatings are usually non-stoichiometric and amorphous which can cause some serious problems such as poor adhesion and excessive coating dissolution rate. A versatile right-angle radio frequency magnetron sputtering (RAMS) approach has been developed to deposit HA coatings on various substrates at low power levels. Using this alternative magnetron geometry, as-sputtered HA coatings are nearly stoichiometric, highly crystalline, and strongly bound to the substrate, as evidenced by analyses using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). In particular, coatings deposited on oriented substrates show a polycrystalline XRD pattern but with some strongly preferred orientations, indicating that HA crystallization is sensitive to the nature of the substrate. Post deposition heat treatment under high temperature does not result in a marked improvement in the degree of crystallinity of the coatings. To study the biocompatibility of these coatings, murine osteoblast cells were seeded onto various substrates. Cell density counts using fluorescence microscopy show that the best osteoblast proliferation is achieved on an HA RAMS-coated titanium substrate. These experiments demonstrate that RAMS is a promising coating technique for biomedical applications.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


2020 ◽  
Vol 92 (6) ◽  
pp. 977-984
Author(s):  
Mayya V. Kulikova ◽  
Albert B. Kulikov ◽  
Alexey E. Kuz’min ◽  
Anton L. Maximov

AbstractFor previously studied Fischer–Tropsch nanosized Fe catalyst slurries, polymer compounds with or without polyconjugating structures are used as precursors to form the catalyst nanomatrix in situ, and several catalytic experiments and X-ray diffraction and atomic force microscopy measurements are performed. The important and different roles of the paraffin molecules in the slurry medium in the formation and function of composite catalysts with the two types of aforementioned polymer matrices are revealed. In the case of the polyconjugated polymers, the alkanes in the medium are “weakly” coordinated with the metal-polymer composites, which does not affect the effectiveness of the polyconjugated polymers. Otherwise, alkane molecules form a “tight” surface layer around the composite particles, which create transport complications for the reagents and products of Fischer-Tropsch synthesis and, in some cases, can change the course of the in situ catalyst formation.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 823
Author(s):  
Shizheng Yang ◽  
Hongliang Lv ◽  
Likun Ai ◽  
Fangkun Tian ◽  
Silu Yan ◽  
...  

InP layers grown on Si (001) were achieved by the two-step growth method using gas source molecular beam epitaxy. The effects of growth temperature of nucleation layer on InP/Si epitaxial growth were investigated systematically. Cross-section morphology, surface morphology and crystal quality were characterized by scanning electron microscope images, atomic force microscopy images, high-resolution X-ray diffraction (XRD), rocking curves and reciprocal space maps. The InP/Si interface and surface became smoother and the XRD peak intensity was stronger with the nucleation layer grown at 350 °C. The Results show that the growth temperature of InP nucleation layer can significantly affect the growth process of InP film, and the optimal temperature of InP nucleation layer is required to realize a high-quality wafer-level InP layers on Si (001).


2015 ◽  
Vol 22 (02) ◽  
pp. 1550027 ◽  
Author(s):  
NADIR. F. HABUBI ◽  
RAID. A. ISMAIL ◽  
WALID K. HAMOUDI ◽  
HASSAM. R. ABID

In this work, n- ZnO /p- Si heterojunction photodetectors were prepared by drop casting of ZnO nanoparticles (NPs) on single crystal p-type silicon substrates, followed by (15–60) min; step-annealing at 600∘C. Structural, electrical, and optical properties of the ZnO NPs films deposited on quartz substrates were studied as a function of annealing time. X-ray diffraction studies showed a polycrystalline, hexagonal wurtizte nanostructured ZnO with preferential orientation along the (100) plane. Atomic force microscopy measurements showed an average ZnO grain size within the range of 75.9 nm–99.9 nm with a corresponding root mean square (RMS) surface roughness between 0.51 nm–2.16 nm. Dark and under illumination current–voltage (I–V) characteristics of the n- ZnO /p- Si heterojunction photodetectors showed an improving rectification ratio and a decreasing saturation current at longer annealing time with an ideality factor of 3 obtained at 60 min annealing time. Capacitance–voltage (C–V) characteristics of heterojunctions were investigated in order to estimate the built-in-voltage and junction type. The photodetectors, fabricated at optimum annealing time, exhibited good linearity characteristics. Maximum sensitivity was obtained when ZnO / Si heterojunctions were annealed at 60 min. Two peaks of response, located at 650 nm and 850 nm, were observed with sensitivities of 0.12–0.19 A/W and 0.18–0.39 A/W, respectively. Detectivity of the photodetectors as function of annealing time was estimated.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Sign in / Sign up

Export Citation Format

Share Document