scholarly journals Transesterification of Low FFA Waste Vegetable Oil using Homogeneous Base Catalyst for Biodiesel Production: Optimization, Kinetics and Product Stability

2018 ◽  
Vol 4 (3) ◽  
pp. 586-592 ◽  
Author(s):  
E.G. Al-Sakkari ◽  
S.T. El-Sheltawy ◽  
A. Soliman ◽  
I. Ismail

The most common method of biodiesel production is base catalyzed transesterification where alkaline materials, such as potassium hydroxide, are used as a catalyst. This paper presents a study of factors affecting biodiesel production from low free fatty acids (FFA) content waste vegetable oil through base catalyzed transesterification as well as the optimum reaction conditions. The optimum conditions were found to be a time of 60 min, catalyst loading of 1% of oil mass, mixing speed of 400 rpm and temperature of 65 °C. It also introduces a kinetic study of this reaction to determine the best model to fit the experimental data. First order model was found to be the best one to fit the early reaction stages while the second order model was the best to describe reaction kinetics in later stages. The stability of produced biodiesel was studied through determination of acid value and viscosity of stored biodiesel along three months.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1513
Author(s):  
Riky Lim ◽  
Deog-Keun Kim ◽  
Jin-Suk Lee

Reutealis trisperma, due to its high kernel-oil yield (±50%) and long productivity (±70 years), is considered to be a promising feedstock for biodiesel production. In addition, this plant, which can thrive on marginal lands, is classified as a non-edible oil since it contains a toxin known as eleostearic acid. The present study aimed to optimize the esterification step in biodiesel production from R.trisperma oil catalyzed using sulfonic ion exchange resin Lewatit K2640. The optimization step was performed using a response surface methodology through the incorporation of a central composite design. A kinetic study was performed as well, based on the assumption of a pseudo-homogeneous second-order model. Catalyst loading was found to have the most significant impact on acid value, followed by temperature and methanol-to-oil molar ratio. The optimal conditions for the esterification step were 92 °C temperature, 5.34% catalyst loading, and 5.82:1 methanol-to-oil molar ratio. The acid value and FFA conversion of R.trisperma oil under these conditions were 2.49 mg KOH/g and 91.75%, respectively. The kinetics study revealed that the constructed model could fit the experimental data well with relatively high reliability. The activation energy required for the esterification of R.trisperma oil was 33.2 kJ/mol.


2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 83
Author(s):  
Mary Grace M. Oliveros ◽  
Amiliza B. Baiting ◽  
Menchie G. Lumain ◽  
Maria Theresa I. Cabaraban

Waste vegetable oil, mainly coming from frying residues, can be used as raw material to obtain a diesel fuel (biodiesel). Biodiesel, a nontoxic, biodegradable, diesel-like fuel, is an important energy alternative capable of decreasing environmental problems caused by the consumption of fossil fuels. The utilization of waste vegetable oils as raw material in biodiesel production was studied. Research was undertaken to establish the availability of used vegetable oil to supply a biodiesel process. It is intended that this work forms an academic study combined with an environmental and technological analysis of the merits of biodiesel as a sustainable fuel. Laboratory experimentation investigated the possibility of using waste vegetable oil from the local fast food chains, and potassium hydroxide as catalyst for the transesterification process. The cleaned waste vegetable oil undergoes transesterification for 4 hours, after which, the biodiesel is separated from the glycerin by gravity. Washing is necessary to remove residual catalyst or soap. Overall material balance for the process gives: 1 kg Waste Vegetable oil + 0.18 kg EtOH + 0.01 kg KOH → 0.74 kg Biodiesel + 0.44 kg Glycerin The biodiesel, in pure form (B100) and in 50% proportion (B50) with petroleum diesel, was run in an essentially unmodified Toyota 2C diesel engine. Smoke density (opacity) and CO exhaust emission both decreased with B50. However, Nox increased with B50. Fuel consumption during engine power testing is significantly greater using the biodiesel, but is also significantly reduced with B50.


2017 ◽  
Vol 23 ◽  
pp. 145-156 ◽  
Author(s):  
Ngoya Tshizanga ◽  
Elizabeth Funmilayo Aransiola ◽  
Oluwaseun Oyekola

2013 ◽  
Vol 860-863 ◽  
pp. 1030-1034
Author(s):  
Yi Wei ◽  
Jing Zhang ◽  
Mu Zhang ◽  
Yin Dong Zhang

Biodiesel orthogonal experiments require large amount of experimental data collected and in order to save experimental time, referring to the correlation coefficients analysis in probability theory, the factors which affect the yield of biodiesel are analyzed. Under the same reaction temperature, the range order is as follows: the molar ration of alcohol to oil, the dosage of catalyst and reaction of time. At the same time, it provides theoretical guidance for obtaining optimum reaction conditions .


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
N. El Boulifi ◽  
A. Bouaid ◽  
M. Martinez ◽  
J. Aracil

Response surface methodology (RSM) based on central composite design (CCD) was used to optimize biodiesel production process from corn oil. The process variables, temperature and catalyst concentration were found to have significant influence on biodiesel yield. The optimum combination derived via RSM for high corn oil methyl ester yield (99.48%) was found to be 1.18% wt catalyst concentration at a reaction temperature of55.6∘C. To determine how long biodiesel can safely be stored, it is desirable to have a measurement for the stability of the biodiesel against such oxidation. Storage time and oxygen availability have been considered as possible factors influencing oxidative instability. Biodiesel from corn oil was stored for a period of 30 months, and the physico-chemical parameters of samples were measured at regular interval of time. Results show that the acid value (AV), peroxide value (PV), and viscosity (ν) increased while the iodine value (IV) decreased. These parameters changed very significantly when the sample was stored under normal oxygen atmosphere. However, theν, AV, and IV of the biodiesel sample which was stored under argon atmosphere were within the limit by the European specifications (EN 14214).


Author(s):  
Kevin N. Nwaigwe ◽  
Nnamdi V. Ogueke ◽  
Paulinus E. Ugwuoke ◽  
Emmanuel E. Anyanwu

The performance evaluation of a developed batch reactor using beniseed oil, fresh vegetable oil, and waste vegetable oil is presented. The transesterification process was used on samples of each feedstock at different reaction temperature and time while methanol and sodium hydroxide were used as the reagent and catalyst respectively. Optimum yield obtained at 55°C and 50 minutes gave the value of 1.65 litres of biodiesel for beniseed, 1.97 litres of biodiesel for fresh vegetable palm oil and 1.81 litres of biodiesel for waste vegetable palm oil. The yield of the by product (Glycerol) was maximum at the reaction time and temperature of 70 minutes and 60°C respectively. Characterization test results showed that the produced biodiesel has similar fuel properties with the conventional diesel and agrees with the ASTM standards for biodiesel. The outcome shows that the various feedstock are good sources for biodiesel production using the developed batch reactor.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 224
Author(s):  
Zakir Hussain ◽  
Deepa Meghavathu ◽  
Rakesh Kumar

Entrepreneurship development, energy crisis, rising fossil fuel prices, increasing greenhouse gas emission and waste management are the key issues which concern the government to tackle them sustainably. The advent of biodiesel as a fuel paves the pathway to handle these issues and together it creates an opportunity to develop a small/medium to large-scale biodiesel production units. Current research is mainly focused on creating the roadmap to solve the feedstock scarcity issue faced by Indian biodiesel industries through the field survey. It also presents a robust model framework to fix the minimum selling price of biodiesel through energy input-output and cost input-out analysis in producing a unit volume of biodiesel. The results show that the surveyed area may have the potential to supply on an average of 129 liters/day waste vegetable oil. Energy analysis shows that the highest share of energy 71.84% was from waste vegetable oil followed by 25.99% corresponds to alcohol. Others are being at 0.85% due to the catalyst, 0.44% due to electricity, 0.68% due to machinery and 0.2% due to human labor. Cost analysis shows that the highest share of cost 52.13% was due to alcohol followed by 39.34% due to waste cooking oil. 


Author(s):  
O. A. Aworanti ◽  
A. O. Ajani ◽  
S. E. Agarry ◽  
K. A. Babatunde ◽  
O. D. Akinwunmi

In this research work, the optimum process variables (catalyst, methanol to oil ratio and reaction time) for transesterification of palm oil sludge (POS) to biodiesel were studied. The transesterification process was carried by mixture of palm oil sludge, methanol and catalyst with the help of magnetic stirrer at 300 rpm and at temperature of 60ºC. The catalyst used for the process was potassium hydroxide (KOH). One-Factor-at-A-Time was used to select the possible optimum levels of process variable that gives high biodiesel yield. The study was evaluated by five levels  of methanol-to-oil ratio (1:1 – 12:1), catalyst (0.1- 2%) and reaction time (30 – 150 min).The optimum process variables for transesterification of palm oil sludge (POS) to achieved maximum biodiesel yield  were found to be methanol to oil molar ratio of 12:1, catalyst loading of 1.5wt% and reaction time of 30 min. At this optimum conditions the maximum biodiesel yield was 61.2%. The biodiesel produced from transesterification of palm oil sludge was characterized in order to determine the properties of the product. The density of POS is 857.0 kg/m3, kinematic viscosity of 5.38 mm2/s, flash point of 180°C, pour point of -5°C, and Acid value of 0.17 mgKOH/g. The biodiesel produced from transesterification of palm oil sludge meets the EN 14214 and ASTM 6751 standard. Thus, this study will be helpful to determine an efficient and economical procedure for biodiesel production from non-edible raw materials with high free fatty acid.


2019 ◽  
Vol 20 (4) ◽  
pp. 21-25
Author(s):  
Marwan Hussien ◽  
Hayder Abdul hameed

Bio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.


Sign in / Sign up

Export Citation Format

Share Document