scholarly journals ORGANIZATION OF THE ENERGY MANAGEMENT SYSTEM ON THE BASIS OF THE UNIVERSITY KNOWLEDGE HUB

Management ◽  
2021 ◽  
Vol 33 (1) ◽  
pp. 94-104
Author(s):  
Оlena Nifatova

BACKGROUND AND OBJECTIVES. Energy efficiency and energy saving are the priority direction of science, technology and engineering development in Ukraine. The policy of energy saving, carried out all over the world, is directed to all branches and scientific researches in all spheres. The big consumer of energy resources is the higher school. Updating of normative-legal and technical base aimed at design and operation of buildings with low energy consumption and high energy efficiency class shows the necessity of short-term solution of the problem. At the same time, there is a lack of a systemic view of energy efficiency, which does not allow evaluating the level of energy costs throughout the life cycle of higher education institutions, which shows the need to find effective solutions to the problem.METHODS. Multiple regression equation was used to assess the influence of factors on electricity consumption and energy efficiency of Kyiv National University of Technologies and Design, statistical analysis of the obtained data was performed.FINDINGS. As a result it was found out that the data of electricity consumption do not obey the law of normal distribution, so it is difficult to build an accurate prediction of electricity consumption. The use of HAB knowledge on energy efficiency allowed a more qualitative analysis and highlighted the main factors affecting electricity consumption. The university has unregulated central heating, individual air conditioning systems, and central and individual lighting. In this regard, we selected the following main factors: average outdoor air temperature, average duration of daylight hours, heating period, average number of people working per day, during the month to conduct energy monitoring and energy audit of university buildings.CONCLUSION. Implementation of suggested scheme of structural organization of typical system of automatic accounting of university energy consumption on the basis of university HUB of energy efficiency knowledge: server, allowing to collect, store and process data; routers by means of various wire and wireless communication technologies; hubs, installed on the objects of energy consumption; workstations, which are personal computers with installed software of used HUB will allow to optimize energy consumption.

Author(s):  
Ivan M. Gryshchenko ◽  
Mykhailo O. Verhun ◽  
Andrii S. Prokhorovskyi

This article attempts to verify the relevance of building a network of energy knowledge hub centres to tackle the priority objective in enhancing energy efficiency and energy saving management in higher education institutions. It is emphasized that the issues of careful and wise use of fuels and energy resources challenge more government efforts, active use of advanced projects to manage energy saving and energy efficiency through the integrated use of different energy sources. The study argues that to identify the potential for energy saving, setting regulatory indicators of energy consumption, determining the key energy saving measures and target objects in the public sector where energy saving programs are planned to be implemented, there is a need to conduct energy surveys with further developing of energy passports for buildings. In the frameworks of this study, the following research methods were used: abstract and logical analysis – to interpret the essence of energy saving concepts for universities; systemic approach – to identify the specifics of energy saving projects implementation in universities; in-depth analysis and synthesis – to forecast the university development priority area of the "Energy efficiency and energy saving"; system, structural, comparative and statistical analyses – to assess the energy consumption in universities; economic and statistical methods – to evaluate the level and the dynamics of the energy sources use before and after the implementation of project activities; graph-based and analytical methods – to facilitate visual representation and schematic presentation of forecasts for further development of energy efficiency and energy saving systems. The study offers a mechanism to shape a network of energy knowledge hub centres to forecast a priority development area of energy efficiency and energy saving programs in higher education institutions along with providing an overview on the process of energy saving based on energy knowledge hub centres by carrying out the following tasks: project identification, scanning, energy audit, implementation of an action plan, and monitoring. It has been verified that to enhance the energy supply system in the university buildings, the following objectives should be attained: using the energy knowledge hub to forecast the university energy efficiency and energy saving programme, implementing an automated individual heating station with weather regulation and installing new radiator heaters.


2018 ◽  
Vol 239 ◽  
pp. 01038 ◽  
Author(s):  
Stanislav Istomin

Through additional processing of the modern movement parameter recorders data of the DC electric locomotive 2ES6 the article first presents the results of the actual consumption of electricity for own needs and the proportion of these costs from the consumption of trains traction is determined, which in terms of operational depot is difficult to implement. The estimation of influencing factors on the energy consumption for own needs of 2ES6 series electric locomotives is made. As a result it was found that the internal energy consumption is influenced by such factors as rolling stock mass, axle load and environment temperature. Statistic models were made to normalize internal electricity consumption and their quality estimation was fulfilled. It is found that the remainders of the multiple regression equation, which take the above factors into account, obey the normal distribution law, indicating the adequacy of their further use to assess the energy efficiency of the 2ES6 series DC electric locomotives auxiliary equipment. The use of regression models will allow to identify electric locomotives with auxiliary equipment with low energy efficiency and to send them to unscheduled repairs in time to restore the required technical condition.


2016 ◽  
Vol 17 (2) ◽  
pp. 188-207 ◽  
Author(s):  
Nandarani Maistry ◽  
Harold Annegarn

Purpose – The purpose of this paper is to outline efforts at the University of Johannesburg, a large metropolitan university in Gauteng province, to examine energy efficiency within the context of the green campus movement, through the analysis of electricity consumption patterns. The study is particularly relevant in light of the cumulative 230 per cent increase in electricity costs between 2008 and 2014 in South Africa that has forced institutions of higher education to seek ways to reduce energy consumption. Design/Methodology/Approach – A quantitative research design was adopted for the analysis of municipal electricity consumption records using a case study approach to identify trends and patterns in consumption. The largest campus of the University of Johannesburg, which is currently one of the largest residential universities in South Africa, was selected as a case study. Average diurnal consumption profiles were plotted according to phases of the academic calendar, distinguished by specific periods of active teaching and research (in-session); study breaks, examinations and administration (out-of-session); and recesses. Average profiles per phase of the academic calendar were constructed from the hourly electricity consumption and power records using ExcelTM pivot tables and charts. Findings – It was found that the academic calendar has profound effects on energy consumption by controlling the level of activity. Diurnal maximum consumption corresponds to core working hours, peaking at an average of 2,500 kWh during “in-session” periods, 2,250 kWh during “out-of-session” periods and 2,100 kWh during recess. A high base load was evident throughout the year (between 1,300 and 1,650 kWh), mainly attributed to heating and cooling. By switching off the 350 kW chiller plant on weekdays, a 9 per cent electricity reduction could be achieved during out-of-session and recess periods. Similarly, during in-session periods, a 6 per cent reduction could be achieved. Practical implications – Key strategies and recommendations are presented to stimulate energy efficiency implementation within the institution. Originality Value – Coding of consumption profiles against the academic calendar has not been previously done in relation to an academic institution. The profiles were used to establish the influence of the academic calendar on electricity consumption, which along with our own observation were used to identify specific consumption reduction opportunities worth pursuing.


Author(s):  
Valery Glebovich Larionov ◽  
Marina Gennad'evna Treyman

The article gives the analysis of resource saving and energy efficiency of the enterprises of water supply and waste water services of the State Unitary Enterprise “St. Petersburg Vodokanal”. There has been evaluated the consumption of electrical energy by the enterprise. The main methods of energy resources management (creating a system of rational consumption and saving of energy resources, using energy-efficient materials, equipment and technologies, identifying the potential of energy-saving measures at operating facilities) have been determined. The priority directions for reducing the production energy intensity in the water supply processes have been defined. An algorithm is proposed that includes the processes of collecting, modeling, structuring information, as well as developing an optimal solution for an enterprise. A model for optimizing work in water supply processes is presented, software products are considered that allow to control the processes of energy saving and energy efficiency. The most promising software products for their introducing them into practice of the enterprise have been identified, including General Electric Intelligent Platforms CSense. A plan for the sequential implementation of the software product into operation at the enterprise is presented. The dynamics of electricity consumption at the enterprise, the structure of energy consumption are illustrated. It is noted that the most significant contribution to the amount of energy consumption is made by the technological processes of water intake and supply. It has been substantiated that the most energy-consuming process for the enterprise (Water Supply Branch of the State Unitary Enterprise St. Petersburg Vodokanal) is replacement or maintenance of pumping equipment. The components of energy conservation of the enterprise under study are the partial regulation and automation of processes.


Management ◽  
2021 ◽  
Vol 33 (1) ◽  
pp. 19-31
Author(s):  
Valeriia Shcherbak

BACKGROUND AND OBJECTIVES. The general problem of the research is to define the essence of university energy efficiency as a special type of management of higher educational institution activity, increase of its energy autonomy level, scientific research on economical use of energy resources. University energy efficiency management is a special type of management, which is based on finding new opportunities to save energy resources based on innovations, ability to attract resources from a variety of sources.METHODS. Logic, system and statistical analysis, and multiple regression methods were used to conduct energy monitoring of HUB use of energy efficiency knowledge. The method of cluster analysis was used for energy audit and energy certification of university buildings. The average value, value of mode and median, indicators of variation (variation range, average linear deviation and variation coefficient) of daily electricity consumption of building No.4 of Kyiv National University of Technologies and Design were calculated, statistical analysis of obtained data was made.FINDINGS. Existing automatic energy accounting systems in university buildings were reviewed, a comparative table was compiled and the systems were ranked according to the sum of the scores obtained.The comparative analysis is carried out according to a set of criteria, including the unique features that distinguish these systems from each other. Based on the ranking results, the best model is selected and its advantages and disadvantages are identified. A simplified list of requirements and necessary functionality for the use of energy efficiency knowledge HUB for energy monitoring, energy audits and energy certification of university buildings has been developed.CONCLUSION. The obtained asymmetry coefficient made it possible to conclude that there is a right-hand asymmetry in the amount of energy used in the university. The selected main factors influencing energy consumption allowed to monitor the energy efficiency of the university in 2020. The use of multiple regression equation allowed to take into account the main factors of energy consumption, the extent of their influence, to compare the obtained results with the actual consumption, to build energy profiles and to carry out energy certification of all buildings of Kyiv National University of Technologies and Design.


2017 ◽  
Vol 8 (4) ◽  
pp. 671-684 ◽  
Author(s):  
Zaneta Simanaviciene ◽  
Dirma Virgilijus ◽  
Arturas Simanavicius

Research background: Most of the studies and their authors focus on the social and eco-nomic impacts of energy-saving behavior. However, they do not focus on the psychological factors affecting the efficiency of energy consumption in households. Lithuania has a lack of a unified and justified opinion on psychological factors that affect the energy efficiency of households. Purpose of the article: The main objective of the article is to identify the psychological factors that influence energy efficiency in households and to identify the appropriate measures to change the individual’s energy consumption behavior. Methods: The article was based on analysis of scientific literature and expert evaluation, when experts selected the most influencing psychological factors. Expert valuation allowed to set the right conditions in which individuals are more easily assimilated by means of energy saving. Findings: In most cases, economic and technological factors significantly influence household energy consumption. Increased energy-efficient equipment production and supply is causing an energy consumption growth in households, because they are more inclined to buy and use more efficient electrical equipment. An investigation has showed that the energy consumption is strongly influenced by some cultural and psychological factors: with greater public openness to innovation, the households tend to use energy more efficiently. Also, some psychological indicators have significant impact on energy consumption has — frequently the more pronounced neuroticism or extraversion rate. Since the research was performed only in Lithuania, in the future it will seek to carry out an investigation in several countries and to compare a various factors on the proposed measures and the efficiency of household energy consumption.


2020 ◽  
Vol 84 (1) ◽  
pp. 16-21
Author(s):  
Zhanna Petrova ◽  
Kateryna Slobodianiuk

Outdated technologies in drying processes can lead to iПеrrational use of energy, as a consequence, high energy consumption and increased energy consumption. Therefore, the issues of energy saving and energy efficiency are the most important tasks to be solved. Nowadays, energy saving and energy efficiency are also part of the environmental problem. Ukraine, which has a unique geographical position for Europe, is fully supplied with natural resources, - one of the countries where there is inefficient use of energy resources. One of the energy-consuming areas of vegetable processing is drying. In the modern world, the issue of energy efficiency of drying methods is one of the most relevant areas of research. Convective drying of vegetable raw materials requires a rational use of regime parameters of the process corresponding to the biochemical properties of the processed object. The primary objectives of this area of processing of vegetable raw materials are to reduce energy costs and ensure high quality characteristics of the final product. This article presents the developed heat-technology for obtaining phytoestrogenic powder from soybeans and spinach. Which includes 3 stages: preliminary preparation of raw materials for drying; drying of thermolabile vegetable raw materials; dispersion and packaging of the obtained phytoestrogenic powder. As a result of previously conducted comprehensive research, it was found that the use of heat technology reduces energy costs at the stage of preparation of raw materials through the improvement of existing hydrothermal treatment of soybeans, as well as energy savings of 21% through the use of developed step modes. Studies of the qualitative characteristics of the obtained phytoestrogenic powder confirm the high quality of the final product.


2021 ◽  
Vol 11 (2) ◽  
pp. 1302-1311
Author(s):  
Anna Vladimirovna Vinogradova

The article analyses the volume of electricity consumption in the Russian Federation and in several Russian regions. The study was held taking into consideration the statistical data from 1998 to 2019. The authors developed an economic and mathematical model showing the influence of various factors on the electricity consumption. Among the main factors, they identified the gross regional product, the gross regional product per capita, electricity prices, and the exchange rate. They also draw conclusions about the significance of the factors included into the model that influence on the amount of energy consumed. An overview of approaches to the analysis of factors affecting the volume of energy consumption is made. The influence on the process of sustainable innovative development is determined, and a balanced approach to improving the energy efficiency of the domestic economy is proposed.


Author(s):  
Ivan M. Gryshchenko ◽  
Svitlana V. Bebko

The article reveals the essence of the key motivation drivers to save energy and increase the energy efficiency in higher education institutions. In particular, a low level of interest of higher education institutions in the implementation of strategies to reduce energy consumption has been observed. The findings suggest that the lack of interest in energy saving is primarily affected by budget legislation since the energy cost calculation was based on the consumption norms for a particular budgetary institution and the current (planned) electricity and heat tariffs. Recently, it has been decided that from now on universities will not obtain budget funding to cover utility costs; the amount of subsidies from the Ministry of Education and Science of Ukraine for the implementation of the government objectives will comprise regulatory costs for public service provision according to the student contingent. Standard property maintenance costs will not be covered by the Ministry anymore which will impose the burden of paying the utility bills upon the University’s gross income. Hence, there is a need to take efforts to enhance energy efficiency and energy saving in higher education institutions which was implemented using a foresight methodology. Within the scope of this study, the foresight project to improve the energy efficiency of buildings in the frameworks of the University energy hub is based on the following calculations: thermal energy consumption for heating public buildings, estimated hourly heating load to ensure heating in the building, verifying the feasibility of heating standby regulation, measuring energy savings through the creation of an automated heat supply station, as well as annual savings in monetary terms. In order to save resources and boost energy efficiency based on the University energy hub using an automated heat supply station, the study offers a mathematical toolkit to justify the choice of minimum and maximum values of optimal microclimate parameters; reduce infiltration, increase the efficiency of indoor air distribution; optimal modes of local air conditioning, preheating and cooling; utilizing of "waste" and natural heat and cold; "combining" microclimate systems with other systems; improving automation devices in technical systems. It is argued that increasing the energy efficiency of heating systems in University buildings on the basis of its own energy hub will contribute to gaining significant savings in thermal energy for heating and significantly reduce carbon dioxide emissions into the environment. In addition, the study reveals that the cost of thermal energy for heating depends upon a building design, modernization quality, reconstruction and insulation, applied building materials, spatial planning solutions, the presence or absence of control and automated systems, maintenance systems and attitude of owner’s attitude to innovations. The conclusions summarize that the cost of thermal energy can vary significantly in buildings of the same type.


Author(s):  
Olga Kuzina

Abstract The value of the construction industry for green growth of the Russian economy is identified. The structure of the building materials industry, indicators of production volumes, share of exports and imports of construction materials are analysed. The main factors of high energy consumption in the construction industry are formed as a table. Main activities to modernise the building materials industry and “green” growth of the Russian economy as a whole are proposed. The urgency of formation of the mechanism of energysaving innovation application in the construction industry is justified. The methodology of management of the building materials industry development through the introduction of energy-saving innovations is proposed.


Sign in / Sign up

Export Citation Format

Share Document