scholarly journals DNA and RNA Vaccines: Current Status, Quality Requirements and Specific Aspects of Preclinical Studies

2019 ◽  
Vol 19 (2) ◽  
pp. 72-80 ◽  
Author(s):  
A. A. Goryaev ◽  
M. V. Savkina ◽  
Yu. I. Obukhov ◽  
V. A. Merkulov ◽  
Yu. V. Olefir

This review focuses on DNA and RNA vaccines whose potential use was first considered at the end of the 20th century. However, not a single bacterial plasmid-based or mRNA vaccine has been used since that time in public healthcare for the prevention of infectious diseases. Nevertheless, vaccines containing recombinant nucleic acids as the active ingredient still attract interest due to the possibility of rapid development, low-cost production, safety of the technology and the potential to activate cellular and humoral immunity. Recent technological advances have largely overcome the problems of low immunogenicity, instability, and difficulties with the delivery of DNA and RNA vaccines in humans. The aim of this review was to present the main strategies of development of DNA and RNA vaccines designed to prevent infectious diseases, and to summarise requirements for the quality control and preclinical studies. The article examines the general principles of creation of plasmid vectors encoding protective antigens. It describes new technologies used in the creation of DNA vaccines with plasmids encoding an attenuated virus genome (iDNA and PPLAV), and RNA vaccines based on mRNA and self-amplifying RNAs. The article presents current regulatory requirements for the choice of quality parameters to be tested and the general principles of preclinical studies of DNA and RNA vaccines.

2011 ◽  
Vol 14 (3) ◽  
pp. 400 ◽  
Author(s):  
Ravindra B Malabadi ◽  
Advaita Ganguly ◽  
Jaime A Teixeira da Silva ◽  
Archana Parashar ◽  
Mavanur R Suresh ◽  
...  

ABSTRACT - This review highlights the advantages and current status of plant-derived vaccine development with special reference to the dengue virus. There are numerous problems involved in dengue vaccine development, and there is no vaccine against all four dengue serotypes. Dengue vaccine development using traditional approaches has not been satisfactory in terms of inducing neutralizing antibodies. Recently, these issues were addressed by showing a very good response to inducing neutralizing antibodies by plant-derived dengue vaccine antigens. This indicates the feasibility of using plant-derived vaccine antigens as a low-cost method to combat dengue and other infectious diseases. The application of new methods and strategies such as dendritic cell targeting in cancer therapy, severe acute respiratory syndrome, tuberculosis, human immune deficiency virus, and malaria might play an important role. These new methods are more efficient than traditional protocols. It is expected that in the near future, plant-derived vaccine antigens or antibodies will play an important role in the control of human infectious diseases. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


1983 ◽  
Vol 27 (7) ◽  
pp. 589-591
Author(s):  
Carole A. Bohn

The new technologies proposed and/or retrofitted into Navy crewstations have demonstrated increasing sophistication and flexibility. Additionally, the crewstation technologies have shown very rapid development cycles. The current approach of reliance solely on flight testing has proven inadequate because of the multitude of equipment operating modes, lack of experimental control of situational variables, possible location/placement of components, variety of operational environments, dynamic crew tasking, and control/display technology unique characteristics. Test methods and relevent criteria are lacking. A quick fix is the use of low fidelity mockups for rapid testing and methods development. Such an approach can be both effective with respect to test dollars and responsive to the dynamics of the control/display development cycle. The present paper discusses the use of the low fidelity simulation in two specific developments. The first example presents the design of formats for a universal control/display layout to be used as a replacement for conventional pushbutton technology. The second example presents testing designed to determine the amount and type of control/display required for a crewstation functional upgrade. Both examples are from the test and evaluation work being performed on Navy patrol aircraft. Finally, a laboratory will be described which is being developed to permit this approach to testing.


2021 ◽  
Vol 20 (2) ◽  
pp. 463-464
Author(s):  
Musa Mohd Nordin ◽  
Husna Musa

As the number of COVID-19 cases continues to rise with over 65 million recorded cases and more than 1.5 million mortalities as of early December, the race against time to find a vaccine intensifies. In recent years, there has been growing interest in mRNA-based technology for the development of prophylactic vaccines against infectious diseases and even for cancers and allergies. The prospects for mRNA vaccines are very promising because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, until now, no vaccines using this technology have made it this far in clinical trials thus there have been concerns on the therapeutic and possible adverse effects and claims especially on social media that the vaccines will alter the DNA. This article discusses the unique attributes of mRNA vaccines and current challenges and expectations within the context of the COVID-19 pandemic. Bangladesh Journal of Medical Science Vol.20(2) 2021 p.463-464


2017 ◽  
Vol 114 (16) ◽  
pp. 4055-4059 ◽  
Author(s):  
David E. Bloom ◽  
Steven Black ◽  
Rino Rappuoli

Infectious diseases are now emerging or reemerging almost every year. This trend will continue because a number of factors, including the increased global population, aging, travel, urbanization, and climate change, favor the emergence, evolution, and spread of new pathogens. The approach used so far for emerging infectious diseases (EIDs) does not work from the technical point of view, and it is not sustainable. However, the advent of platform technologies offers vaccine manufacturers an opportunity to develop new vaccines faster and to reduce the investment to build manufacturing facilities, in addition to allowing for the possible streamlining of regulatory processes. The new technologies also make possible the rapid development of human monoclonal antibodies that could become a potent immediate response to an emergency. So far, several proposals to approach EIDs have been made independently by scientists, the private sector, national governments, and international organizations such as the World Health Organization (WHO). While each of them has merit, there is a need for a global governance that is capable of taking a strong leadership role and making it attractive to all partners to come to the same table and to coordinate the global approach.


2007 ◽  
Vol 20 (3) ◽  
pp. 489-510 ◽  
Author(s):  
Els N. T. Meeusen ◽  
John Walker ◽  
Andrew Peters ◽  
Paul-Pierre Pastoret ◽  
Gregers Jungersen

SUMMARY The major goals of veterinary vaccines are to improve the health and welfare of companion animals, increase production of livestock in a cost-effective manner, and prevent animal-to-human transmission from both domestic animals and wildlife. These diverse aims have led to different approaches to the development of veterinary vaccines from crude but effective whole-pathogen preparations to molecularly defined subunit vaccines, genetically engineered organisms or chimeras, vectored antigen formulations, and naked DNA injections. The final successful outcome of vaccine research and development is the generation of a product that will be available in the marketplace or that will be used in the field to achieve desired outcomes. As detailed in this review, successful veterinary vaccines have been produced against viral, bacterial, protozoal, and multicellular pathogens, which in many ways have led the field in the application and adaptation of novel technologies. These veterinary vaccines have had, and continue to have, a major impact not only on animal health and production but also on human health through increasing safe food supplies and preventing animal-to-human transmission of infectious diseases. The continued interaction between animals and human researchers and health professionals will be of major importance for adapting new technologies, providing animal models of disease, and confronting new and emerging infectious diseases.


Automation ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 252-265
Author(s):  
Alfonso Gómez-Espinosa ◽  
Jesús B. Rodríguez-Suárez ◽  
Enrique Cuan-Urquizo ◽  
Jesús Arturo Escobedo Cabello ◽  
Rick L. Swenson

The necessity for intelligent welding robots that meet the demand in real industrial production, according to the objectives of Industry 4.0, has been supported owing to the rapid development of computer vision and the use of new technologies. To improve the efficiency in weld location for industrial robots, this work focuses on trajectory extraction based on color features identification on three-dimensional surfaces acquired with a depth-RGB sensor. The system is planned to be used with a low-cost Intel RealSense D435 sensor for the reconstruction of 3D models based on stereo vision and the built-in color sensor to quickly identify the objective trajectory, since the parts to be welded are previously marked with different colors, indicating the locations of the welding trajectories to be followed. This work focuses on 3D color segmentation with which the points of the target trajectory are segmented by color thresholds in HSV color space and a spline cubic interpolation algorithm is implemented to obtain a smooth trajectory. Experimental results have shown that the RMSE error for V-type butt joint path extraction was under 1.1 mm and below 0.6 mm for a straight butt joint; in addition, the system seems to be suitable for welding beads of various shapes.


2017 ◽  
Vol 55 (8) ◽  
pp. 2313-2320 ◽  
Author(s):  
Thomas R. Kozel ◽  
Amanda R. Burnham-Marusich

ABSTRACT Point-of-care (POC) diagnostics provide rapid actionable information for patient care at the time and site of an encounter with the health care system. The usual platform has been the lateral flow immunoassay. Recently, emerging molecular diagnostics have met requirements for speed, low cost, and ease of use for POC applications. A major driver for POC development is the ability to diagnose infectious diseases at sites with a limited infrastructure. The potential use in both wealthy and resource-limited settings has fueled an intense effort to build on existing technologies and to generate new technologies for the diagnosis of a broad spectrum of infectious diseases.


2016 ◽  
Vol 27 (6) ◽  
pp. 882-887 ◽  
Author(s):  
Charles E. Cook ◽  
Janet Chenevert ◽  
Tomas A. Larsson ◽  
Detlev Arendt ◽  
Evelyn Houliston ◽  
...  

Until recently the set of “model” species used commonly for cell biology was limited to a small number of well-understood organisms, and developing a new model was prohibitively expensive or time-consuming. With the current rapid advances in technology, in particular low-cost high-throughput sequencing, it is now possible to develop molecular resources fairly rapidly. Wider sampling of biological diversity can only accelerate progress in addressing cellular mechanisms and shed light on how they are adapted to varied physiological contexts. Here we illustrate how historical knowledge and new technologies can reveal the potential of nonconventional organisms, and we suggest guidelines for selecting new experimental models. We also present examples of nonstandard marine metazoan model species that have made important contributions to our understanding of biological processes.


2021 ◽  
Author(s):  
Ji Myong Choe ◽  
Nam Chol Yu ◽  
Nam Jin Ri ◽  
Mu Song An ◽  
Un Chol Kim

Abstract Absolute rotary angular /position sensors play an important role in various applications and rapid development of new technologies requires further accurate measurement and control. In this paper, a novel, very simple, low-cost and high accurate absolute rotary angular/ position sensor is presented. The sensor operation is based on the combination of circular gradient gray scale and gray code pattern. A simple experiment is done in order to demonstrate proof of concept of proposed sensor. The experimental results show that the proposed absolute rotary angular/position sensor has excellent linear characteristics with accuracy below ±1° and resolution of 0.1° within the full measurement range from 0° to 360°. The proposed idea and experimental results can be helpful to design absolute rotary angular/position sensor to improve performance of it.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3667 ◽  
Author(s):  
Durai Raj Vincent ◽  
N Deepa ◽  
Dhivya Elavarasan ◽  
Kathiravan Srinivasan ◽  
Sajjad Hussain Chauhdary ◽  
...  

The world population is expected to grow by another two billion in 2050, according to the survey taken by the Food and Agriculture Organization, while the arable area is likely to grow only by 5%. Therefore, smart and efficient farming techniques are necessary to improve agriculture productivity. Agriculture land suitability assessment is one of the essential tools for agriculture development. Several new technologies and innovations are being implemented in agriculture as an alternative to collect and process farm information. The rapid development of wireless sensor networks has triggered the design of low-cost and small sensor devices with the Internet of Things (IoT) empowered as a feasible tool for automating and decision-making in the domain of agriculture. This research proposes an expert system by integrating sensor networks with Artificial Intelligence systems such as neural networks and Multi-Layer Perceptron (MLP) for the assessment of agriculture land suitability. This proposed system will help the farmers to assess the agriculture land for cultivation in terms of four decision classes, namely more suitable, suitable, moderately suitable, and unsuitable. This assessment is determined based on the input collected from the various sensor devices, which are used for training the system. The results obtained using MLP with four hidden layers is found to be effective for the multiclass classification system when compared to the other existing model. This trained model will be used for evaluating future assessments and classifying the land after every cultivation.


Sign in / Sign up

Export Citation Format

Share Document