scholarly journals Adsorption kinetics of Direct Black 38 on nitrogen-doped TiO2

2014 ◽  
Vol 16 (4) ◽  
pp. 690-698 ◽  

<div> <p>In this work, three samples of nitrogen-doped TiO<sub>2 </sub>prepared at different calcination temperatures (400, 450 and 500 &deg;C) were applied for the adsorption of Direct Black 38. Kinetic studies about the adsorption of Direct Black 38 on nitrogen-doped TiO<sub>2 </sub>were performed under different initial dye concentrations<br /> (75-175 mg l<sup>-1</sup>). Pseudo-first and pseudo-second order models were fitted with the experimental data. The results revealed that nitrogen-doped TiO<sub>2 </sub>synthesized at 400 &deg;C presented the more adequate characteristics for adsorption purposes, such as specific surface area of 151 m<sup>2</sup> g<sup>-1</sup>. The adsorption kinetics agreed with the pseudo-second order model, at initial dye concentrations from 75 to 175 mg l<sup>-1</sup>. The maximum adsorption capacity predicted by the pseudo-second order model was 138.3 mg g<sup>-1</sup>, and was obtained using nitrogen-doped TiO<sub>2</sub> synthesized at 400 &deg;C. In summary, these results revealed that nitrogen-doped TiO<sub>2</sub> is a good material for the removal Direct Black 38 from aqueous solutions by adsorption.&nbsp;</p> </div> <p>&nbsp;</p>

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoli Yuan ◽  
Wentang Xia ◽  
Juan An ◽  
Jianguo Yin ◽  
Xuejiao Zhou ◽  
...  

The efficiency of dolomite to remove phosphate from aqueous solutions was investigated. The experimental results showed that the removal of phosphate by dolomite was rapid (the removal rate over 95% in 60 min) when the initial phosphate concentration is at the range of 10–50 mg/L. Several kinetic models including intraparticle diffusion model, pseudo-first-order model, Elovich model, and pseudo-second-order model were employed to evaluate the kinetics data of phosphate adsorption onto dolomite and pseudo-second-order model was recommended to describe the adsorption kinetics characteristics. Further analysis of the adsorption kinetics indicated that the phosphate removal process was mainly controlled by chemical bonding or chemisorption. Moreover, both Freundlich and Langmuir adsorption isotherms were used to evaluate the experimental data. The results indicated that Langmuir isotherm was more suitable to describe the adsorption characteristics of dolomite. Maximum adsorption capacity of phosphate by dolomite was found to be 4.76 mg phosphorous/g dolomite. Thermodynamic studies showed that phosphate adsorption was exothermic. The study implies that dolomite is an excellent low cost material for phosphate removal in wastewater treatment process.


2013 ◽  
Vol 367 ◽  
pp. 45-49
Author(s):  
Ying Hong ◽  
Ze Hui Zhong ◽  
You Shi Liu

Chitosan nanoparticles were prepared by crosslinkingusing TPP. SEM showed that chitosan nanoparticles were successfully obtained.The adsorption characteristics of chitosan nanoparticles were evaluated. Theresults demonstrated that chitosan nanoparticles were suitable for adsorbent toremoval Pb2+. The parameters for the adsorption of Pb2+by chitosan nanoparticles were also determined. It was shown that chitosannanoparticles were fit for Langmuir’s isotherm model and that the adsorptionkinetics of Pb2+ described by the pseudo-second-order model could bebest.


2013 ◽  
Vol 726-731 ◽  
pp. 2736-2741
Author(s):  
Ming Da Liu ◽  
Ge Tian ◽  
Liang Jie Zhao ◽  
Yao Sheng Wang ◽  
Lei Guo ◽  
...  

Five blast-furnace slags were used as adsorbents to remove Pb (II) from aqueous solution. Kinetic studies showed that the sorption process was best described by pseudo-second-order model. Among Langmuir, Freundlich and Temkin isotherms, the Freundlich isotherm had a better fit with the simulation of the adsorption of Pb (II).


2012 ◽  
Vol 463-464 ◽  
pp. 7-11 ◽  
Author(s):  
Ming Yan Dang ◽  
Hong Min Guo ◽  
Yan Kun Tan

Chitosan was crosslinked using epichlorohydrin as crosslinking agent to prepare crosslinked chitosan which was used as an adsorbent for the removal of Zn(II) from aqueous solutions. The adsorption prosperities of Zn(II) on crosslinked chitosan were studied, including the influence of pH value and the adsorption kinetics. The kinetics of adsorption was discussed using two kinetic models, the pseudo first-order and the pseudo second-order model. Results reveal that the crosslinked chitosan is suitable as adsorbent to remove Zn(II) from dilute solution. The rate parameters for the Zn(II) by crosslinked chitosan were also determined. It was shown that the adsorption kinetics of Zn(II) could be best described by the pseudo second-order model and the adsorption process may involve a physical adsorption.


2013 ◽  
Vol 68 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Diego S. Paz ◽  
Alexandre Baiotto ◽  
Marcio Schwaab ◽  
Marcio A. Mazutti ◽  
Mariana M. Bassaco ◽  
...  

In this study papaya seeds were used to remove methylene blue dye from aqueous solution. Papaya seeds were characterized as possessing a macro/mesoporous texture and large pore size. Studies were carried out in batches to evaluate the effect of contact time and pH (2–12) on the removal of dye. It was observed that the adsorption of dye was better in the basic region (pH 12). The equilibrium data were analyzed using Langmuir, Freundlich, Dubinin–Raduschkevich, Tempkin, Jovanovich, Redlich–Peterson, Sips, Toth and Radke–Prausnitz isotherms. The equilibrium data were best described by the Langmuir isotherm with a maximum adsorption capacity of 637.29 mg g–1. Adsorption kinetic data were fitted using the pseudo-first-order and pseudo-second-order model. The adsorption kinetic is very fast and was best described by the pseudo-second-order model.


Author(s):  
Dan Wu ◽  
Yaxiu Zhao ◽  
Qiang Liu ◽  
Chein-Chi Chang ◽  
Wei Hou

Abstract A graphene film deposited on titanium substrate was successfully prepared by a facile solution evaporation method, as electrode exhibiting superior electrosorption property toward methylene blue (MB) from aqueous solution. The fabricated graphene film on titanium substrate was characterized in detail by scanning electron microscopy (SEM) and FTIR techniques. As electrode (GTE) for electrosorption of MB, some experimental parameters, such as applied potential, concentration of electrolyte, solution initial pH and temperature, were systematically investigated and discussed. The experimental results demonstrated that the maximum adsorption capacity using GTE can reach 86.06 mg· g−1 under the optimized conditions of −600 mV of applied potential, pH of 7.5, 293 K and 0.01 mg· L−1 Na2SO4 solution, which is 1.40 times of that obtained under open circuit condition in 10 mg· L−1 MB solution. The adsorption isotherm of MB on GTE was analyzed with Langmuir and Freundlich isotherm equations, Pseudo-first-order model, pseudo-second-order model, and intra-particle diffusion model were applied to depict the adsorption kinetics process. The electrosorption of MB preferably fitted Langmuir isotherm, indicating a single-layer adsorption of MB molecules on graphene film followed pseudo-second-order model. Moreover the electrosorption of MB on GTE was found to be spontaneous and endothermic process. This work would be helpful to design and fabricate high performance carbon-based electrodes for high efficiency electrosorption treatment of dye wastewaters.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3584
Author(s):  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Tiberiu Roman ◽  
Marieta Porcescu ◽  
...  

Wastes are the sustainable sources of raw materials for the synthesis of new adsorbent materials. This study has as objectives the advanced capitalization of fly ash, by sulphuric acid activation methods, and testing of synthesized materials for heavy metals removal. Based on the previous studies, the synthesis parameters were 1/3 s/L ratio, 80 °C temperature and 10% diluted sulphuric acid, which permitted the synthesis of an eco-friendly adsorbent. The prepared adsorbent was characterized through SEM, EDX, FTIR, XRD and BET methods. Adsorption studies were carried out for the removal of Cd2+ ions, recognized as ions dangerous for the environment. The effects of adsorbent dose, contact time and metal ion concentrations were studied. The data were tested in terms of Langmuir and Freundlich isotherm and it was found that the Langmuir isotherm fitted the adsorption with a maximum adsorption capacity of 28.09 mg/g. Kinetic data were evaluated with the pseudo-first-order model, the pseudo-second-order model and the intraparticle diffusion model. The kinetics of cadmium adsorption into eco-friendly material was described with the pseudo-second-order model, which indicated the chemisorption mechanism.


Polyethyleneimine supported mesoporous silica (PEI-MPS) has widely been investigated as solid sorbents for CO2 adsorption in laboratory. However, the adsorption kinetics of CO2 on this sorbent is still a disputed problem and the sorbent degradation could be a cause that hinders the sorbent from industrial application. In this study, the PEI-MPS sorbent was prepared by impregnating PEI onto mesoporous silica and then the adsorption kinetics was investigated using the pseudofirst order model, pseudo-second order model and intraparticle diffusion model. Results indicated that the CO2 adsorption kinetics on the sorbent occurred in a 2 stage process. In early stage, it is well fitted by the pseudo-first order model, but in later stage, it is well fitted by the intraparticle diffusion model. The pseudo second-order model proved to be the most suitable one to describe the adsorption of CO2 on the sorbent for the whole adsorption period with less than 5% absolute deviation. The sorbent with a CO2 adsorption capacity of 144.9 mg/g was calculated based on the fitting of the pseudo- second order model. The major degradation issues and their potential effects on the CO2 capture process were also discussed. The degradation significantly impacts on the performance and efficiency of CO2 capture process. The chemical degradation, however, can be considerably minimized by humidification.


In this study, the magnetite nanoparticles (MNP) was successfully synthesized from mill scale waste to analyze the removal of Cu (II) ions from the aqueous solution. The micron-sized magnetite was milled using the high energy ball mills (HEBM with the variation of milling hours 3,5 and 7 to produce nano-sized particles. The MNP were measured by X-Rays Diffraction (XRD), Transmission Electron Microscopy (TEM), Brunauer-Emmett-Teller (BET) and Atomic Absorption Spectroscopy (AAS). Studied parameters are contact time, the initial concentration and particle size. The adsorption kinetics was relatively quick and equilibrium is reached at about 30 minutes. In kinetic studies, the pseudo-second-order model was employed. Langmuir model (R2 >0.9987) corresponded with the adsorption isotherm data of Cu (II) ions. The adsorption capacity of Cu (II) ions onto magnetite nanoparticles (MNP) is 11.36 mgg -1 at 7 hours milling hours. Pseudo-second-order model and Langmuir isotherm were obeyed with experimental results.


Sign in / Sign up

Export Citation Format

Share Document