scholarly journals Long term impact of different cropping systems on soil quality under silty loam soils of Indo-Gangetic plains of India

2016 ◽  
Vol 8 (2) ◽  
pp. 584-587 ◽  
Author(s):  
Khusbhoo Srivastava ◽  
H.S. Jat ◽  
M.D. Meena ◽  
Madhu Choudhary ◽  
A.K Mishra ◽  
...  

In a multi-enterprise agriculture model, six different cropping systems have been evaluated at research farm of CSSRI Karnal for nutrient availability in surface soil. All the cropping systems left tremendous effect on soil quality. Among the different cropping systems, sorghum-berseem maintained lowest soil pH (8.14) followed by cowpea-cauliflower-potato cropping system (8.35). Sorghum-berseem cropping system was significantly build-up of soil fertility in terms of available nitrogen, (221.1kg/ha) and soil organic carbon (0.59%) as compared to other cropping systems. However, phosphorus (59.80 kg/ha) availability was higher in vegetable system followed by wheat-green gram cropping systems (48.85 kg/ha) than the other cropping systems. Vegetable system of multi-enterprise agriculture model showed more availability of Ca (3.20 me/L), Mg (2.63 me/L) and S (11.71 me/L) than other cropping systems. Higher amount of Fe (8.44 mg/kg) was observed in maize-wheat-green gram cropping system, whereas higher Mn (6.37 mg/kg) was noticed in sorghum-berseem fodder system than the other cropping system. Zn and Cu availability was relatively higher in vegetable system. Under prevailing climatic conditions of Karnal, sorghum-berseem fodder system was found to be the best with respect to soil quality and ready adaptability by the farmers as it was not much changed by climatic variability over the last 6 years. Vegetable system and fruits + vegetable were more or less similar in accelerating the availability of nutrients. Thus, leguminous crop (green gram) in any cropping system helped in improving the soil health, which is a good indicator of soil productivity.

Author(s):  
Rakesh Kumar ◽  
B.C. Sharma ◽  
Neetu Sharma ◽  
Brij Nanadan ◽  
Akhil Verma ◽  
...  

Background: Maize-wheat is the predominant cropping system of dryland ecology of Jammu region, but due to their comparatively higher input requirements especially of nutrients and water under the fragile ecology of these dry lands an untenable threat has been posed to their factor productivities. Therefore, all cropping sequences that suit and sustain better on the natural resources of the dryland ecosystems for a longer period of time needs to be explored.Methods: The treatments consisted of two oilseeds i.e. mustard) and gobhi sarson and two pulse crops i.e. chickpea and field pea taken during rabi were followed by two oilseed i.e. soybean and sesame and two pulse crops i.e. green gram and black gram grown during kharif. The experiment was laid out in randomized block design with four replications.Result: Significantly higher chickpea equivalent yield of green gram was observed with field pea- green gram sequence (10.26 q/ha) which was at par with the chickpea – green gram and field pea - black gram system. The available nitrogen status was significantly influenced and recorded highest (166.82kg/ha) under field pea- green gram system. Further overall nutrient mining by this system was quite low as compared to other systems.


2017 ◽  
Vol 9 (2) ◽  
pp. 974-982
Author(s):  
Jagroop Kaur ◽  
Harsimrat K. Bons

Mulching plays an important role in production of agricultural and horticultural crops in the current scenario of declining water table, soil degradation and climate change. The main objectives of mulching are to prevent loss of water by evaporation, prevention of soil erosion, weed control, to reduce fertilizer leaching, to promote soil productivity, to enhance yield and quality of field and fruit crops. So, mulching is useful to save our underground water resource, soil and environment for sustainable crop production. In this review paper, the literature clearly shows pronounced effects of mulching on soil health by improving the soil structure, soil fertility, biological activities, avoid soil degradation in addition to moisture conservation, regulating temperature, encouraging change in favourable micro-climate, check weed growth and ultimately increasing the productivity, quality, profitability and sustainability of crops and cropping systems irrespective of the system/situation.


1999 ◽  
Vol 28 (2) ◽  
pp. 169-181 ◽  
Author(s):  
Edward C. Jaenicke ◽  
Laurie E. Drinkwater

Traditional measures of productivity growth may not fully account for all sources of growth during the transition from conventional to alternative cropping systems. This paper treats soil quality as part of the production process and incorporates it directly into rotational measures of productivity growth. An application to data from an experimental cropping system in Pennsylvania suggests that both experimental learning and soil-quality improvements were important sources of growth during the system's transition.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 79
Author(s):  
Ioanna Panagea ◽  
Dangol Anuja ◽  
Marc Olijslagers ◽  
Jan Diels ◽  
Guido Wyseure

Agricultural cropping systems and experiments include complex interactions of processes and various management practices and/or treatments under a wide range of environmental and climatic conditions. The use of standardized formats to monitor and document these systems and experiments can help researchers and stakeholders to efficiently exchange data, promote interdisciplinary collaborations, and simplify modelling and analysis procedures. In the scope of the SoilCare Horizon 2020 project monitoring and assessment work package, an integrated scheme to collect, validate, store, and access cropping system information and experimental data from 16 study sites, was created. The aim of the scheme is to make the data readily available in a way that the information is useful, easy to access and download, and safe, relying only on open source software. The database design considers data and metadata required to properly and easily monitor, process, and analyse cropping systems and/or agricultural experiments. The scheme allows for the storage of data and metadata regarding the experimental set-up, associated people and institutions, information about field management operations and experimental procedures which are clearly separated for making analysis procedures faster, links between system components, and information about the environmental and climatic conditions. Raw data are entered by the users into a structured spreadsheet. The quality is checked before storing the data into the database. Providing raw data allows processing and analysing as each other user needs. A desktop import application has been created to upload the information from spreadsheet to database, which includes automated error checks of relationship tables, data types, data constraints, etc. The final component of the scheme is the database web application interface, which enables users to access and query the database across the study sites without the knowledge of query languages and to download the required data. For this system design, PostgreSQL is used for storing the data, pgAdmin 4 for database management administration, MongoDB for user management and authentication, Python for the development of the import application, Angular and Node.js/Express for the web application and spreadsheets compatible with LibreOffice Calc. The system is currently tested with data provided by the SoilCare study sites. Preliminary testing indicated that extended quality control of the spreadsheets was required from the system’s administrator to meet the standards and restrictions of the import application. Initial comments from the users indicate that the database scheme, even if it initially seems complicated, includes all the variables and details required for a complete monitoring and modelling of an agricultural cropping system.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Kapila Shekhawat ◽  
S. S. Rathore ◽  
O. P. Premi ◽  
B. K. Kandpal ◽  
J. S. Chauhan

India is the fourth largest oilseed economy in the world. Among the seven edible oilseeds cultivated in India, rapeseed-mustard contributes 28.6% in the total oilseeds production and ranks second after groundnut sharing 27.8% in the India’s oilseed economy. The mustard growing areas in India are experiencing the vast diversity in the agro climatic conditions and different species of rapeseed-mustard are grown in some or other part of the country. Under marginal resource situation, cultivation of rapeseed-mustard becomes less remunerative to the farmers. This results in a big gap between requirement and production of mustard in India. Therefore site-specific nutrient management through soil-test recommendation based should be adopted to improve upon the existing yield levels obtained at farmers field. Effective management of natural resources, integrated approach to plant-water, nutrient and pest management and extension of rapeseed-mustard cultivation to newer areas under different cropping systems will play a key role in further increasing and stabilizing the productivity and production of rapeseed-mustard. The paper reviews the advances in proper land and seedbed preparation, optimum seed and sowing, planting technique, crop geometry, plant canopy, appropriate cropping system, integrated nutrient management and so forth to meet the ever growing demand of oil in the country and to realize the goal of production of 24 million tonnes of oilseed by 2020 AD through these advanced management techniques.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1622
Author(s):  
Mukesh Kumar ◽  
Sabyasachi Mitra ◽  
Sonali Paul Mazumdar ◽  
Bijan Majumdar ◽  
Amit Ranjan Saha ◽  
...  

Crop diversity through residue incorporation is the most important method for sustaining soil health. A field study was conducted over five consecutive years (2012–2017) to see the impact of residue incorporartions in Inceptisol of eastern India. The main plot treatments had five cropping systems (CS), namely, fallow−rice−rice (FRR), jute−rice−wheat (JRW), jute−rice−baby corn (JRBc), jute−rice−vegetable pea (JRGp), jute−rice−mustard−mungbean/green gram (JRMMu), which cinsisted of four sub-plots with varied nutrient and crop residue management (NCRM) levels, namely crops with no residue +75% of the recommended dose of fertilizers (RDF) (F1R0), crops with the residue of the previous crops +75% RDF (F1R1), crops with no resiude +100% RDF (F2R0), and crops with residue +100% RDF (F2R1). The highest system productivity was obtained for JRBc (15.3 Mg·ha−1), followed by JRGp (8.81 Mg·ha−1) and JRMMu (7.61 Mg·ha−1); however, the highest sustainability index was found with the JRGp cropping system (0.88), followed by JRMMu (0.82). Among the NCRMs, the highest productivity (8.78 Mg·ha−1) and sustainability index (0.83) were recorded in F2R1. Five soil parameters, namely, bulk density, available K, urease activity, dehydrogenase activity, and soil microbial biomass carbon (SMBC), were used in the minimum data-set (MDS) for the calculation of the soil quality index (SQI). The best attainment of SQI was found in the JRGp system (0.63), closely followed by the JRMMu (0.61) cropping system.


2019 ◽  
Vol 7 (1) ◽  
pp. 04-18 ◽  
Author(s):  
M. R. Anand ◽  
H.D Shiva Kumar ◽  
Poojitha Kommireddy ◽  
K.N.Kalyana Murthy

Modern agriculture, no doubt has paved the way for “Green Revolution”, but it has led to the application of heavy doses of chemical fertilizers and pesticides with the sole objective of maximizing the yield. The unbalanced and continuous use of chemical fertilizers in intensive cropping system is causing deterioration of soil health, multi-nutrient deficiencies, low productivity, poor quality and environmental hazards. Poor quality of food and fodder has caused serious health problems and disorders in both animals and human beings. Now, the agriculture research is focused on evolving ecologically sound, biologically sustainable and socio economically viable technologies like organic farming which includes local organic sources of nutrients without using chemical fertilizers and pesticides. Adoption of organic farming minimizes the environmental pollution and maintain long-term soil fertility by improving soil organic matter and essential plant nutrients including secondary and micronutrients. For producing quality food by sustaining the soil productivity and soil health are the challenges before us on one side and minimizing the pressure on non renewable sources or limited available sources on other hand needs immediate attention by all the stakeholders engaged in agriculture. Application of technologies available in organic farming and use of all locally available organic sources particularly on farm biomass which are rich in secondary and micronutrients will meet the twin objective of quality food production and reducing the pressure on non renewable resources.


2021 ◽  
Author(s):  
SC Tripathi ◽  
Karnam Venkatesh ◽  
Raj Pal Meena

Abstract Continuous cultivation of Rice-Wheat Cropping System (RWCS) in Indo-Gangetic Plains of India is showing declining factor productivity coupled with many environmental problems. Diversifying the RWCS is one of the environmental friendly options for sustaining food production.Four crop rotations involving maize and sorghum in summer, wheat/ potato/ mustard in winter followed by short duration green gram in late spring were studied to identify the most productive and economic combination from 2017 to 2020. Ranking of treatments by Tukey’s test of significance indicated that the maize-potato-wheat (16.49 t ha-1) combination was best in terms of system productivity calculated in terms of wheat equivalent yield (WEY). Maize-wheat-green gram crop sequence was most profitable by having higher Land Use Efficiency (LUE=87.67%) and net return (NR=1577.1 $ha-1). The gross margin comparison revealed that maize-based crop sequences earned higher gross returns (23.17%), net return (93.66%), and B: C ratio (23.7%) than sorghum-based crop sequences. Soil health parameters were improved under the maize-mustard-green gram system, which increased the organic carbon content by 28.65% and available N by 34.91%. Adoption of alternate cropping sequences instead of rice-wheat, in the Indo-Gangetic Plains of India could be more sustainable, profitable, and environment friendly.


2020 ◽  
Vol 158 (1-2) ◽  
pp. 38-46
Author(s):  
Bharati Kollah ◽  
Mahendra Bakoriya ◽  
Garima Dubey ◽  
Rakesh Parmar ◽  
J. Somasundaram ◽  
...  

AbstractMethane (CH4) consumption in agricultural soil is imperative for the mitigation of climate change. However, the effect of tillage and cropping systems on CH4 consumption is less studied. Experiments were carried out in Madhya Pradesh, India with soybean-wheat (SW), maize-wheat (MW) and maize-gram (MG) cropping systems under conventional tillage (CT) and no-tillage (NT). Soybean/maize was cultivated during the kharif season (July–October) and wheat/chickpea in the rabi season (October–March) for 9 years consecutively. Soil samples were collected during vegetative growth stages of soybean and maize from different cropping systems. Methane consumption, the abundance of methanotrophs as particulate methane monooxygenase (pmoA) gene copies, soil and crop parameters were estimated. Methane consumption rate was higher in NT and upper soil layer (0–5 cm) than CT and 5–15 cm depth. Methane consumption rate k ranged from 0.35 to 0.56 μg CH4 consumed/g soil/d in the order of MW>SW>MG in 0–5 cm. The abundance of pmoA gene copies ranged from 43 × 104/g soil to 13 × 104/g soil and was highest in MW-NT and lowest in MG-CT. Available nitrogen, phosphorus and potassium were higher in 0–5 cm than in 5–15 cm depth. Soil and plant parameters and abundance of pmoA genes correlated significantly and positively with CH4 consumption rate. No-tillage stimulated CH4 consumption compared to CT irrespective of cropping system and CH4 consumption potential was highest in MW and lowest in MG. However, the magnitude of the positive effect of NT towards CH4 consumption was higher in SW and MG than MW.


Plant Disease ◽  
2021 ◽  
Author(s):  
Fei Xu ◽  
Wei Liu ◽  
Yuli Song ◽  
Yilin Zhou ◽  
Xiangming Xu ◽  
...  

In the main wheat production area of China (The Huang Huai Plain, HHP), both Fusarium graminearum and F. asiaticum, the causal agents of Fusarium head blight (FHB), are present. We investigated whether the relative prevalence of F. graminearum and F. asiaticum is related to cropping systems and/or climate factors. A total of 1844 Fusarium isolates were obtained from 103 fields of two cropping systems: maize-wheat and rice-wheat rotations. To maximize the differences in climatic conditions, isolates were sampled from the north and south HHP region. Based on the phylogenetic analysis of EF-1α and Tri101sequences, 1207 of the 1844 isolates belonged to F. graminearum, and the remaining 637 isolates belonged to F. asiaticum. The former was predominant in the northern region: 1022 of the 1078 Fusarium isolates in the north were F. graminearum. The latter was predominant in the southern region: 581 of the 766 Fusarium isolates belonging to F. asiaticum. Analysis based on generalised linear modelling, the relative prevalence of the two species was associated more with climatic conditions than with the cropping system. Fusarium graminearum was associated with drier conditions, cooler conditions during the winter but warmer conditions in the infection and grain-colonization period, and with the maize-wheat rotation. The opposite was true for F. asiaticum. Except 15-ADON, the trichothecene chemotype composition of F. asiaticum differed between the two cropping systems. The 3-ADON was more prevalent in the maize-wheat rotation; whereas NIV more prevalent in the rice-wheat rotation. The results also suggested that environmental conditions in the overwintering period appeared to be more important than that in the infection and grain-colonization and pre-anthesis sporulation periods in affecting the relative prevalence of F. graminearum and F. asiaticum. More research is needed to study the effect of overwintering conditions on subsequent epidemic in the following spring.


Sign in / Sign up

Export Citation Format

Share Document