scholarly journals Combining ability and heterosis analysis for drought tolerant traits in rice (Oryza sativa L.)

2016 ◽  
Vol 8 (2) ◽  
pp. 674-682
Author(s):  
V. Karpagam ◽  
S. Jebaraj ◽  
S. Rajeswari

Rice is the most important staple food for more than half of the world’s population and also for most of the countries. A Line x Tester analysis was undertaken to study the nature of gene action for yield and drought tolerant traits. The ratio of SCA and GCA was less than unity for all the characters which revealed that the preponderance of non- additive gene action governing the traits concerned. The lines viz., ADT 43, ADT (R) 49, CO (R) 50 and the testers viz., PMK (R) 3, Chandikar and Anna (R) 4 were adjudged as the best general combiners for drought tolerant traits. The cross combinations viz., ADT 39 x Vellaichitraikar had exhibited significant values for dry root weight (9.66), root/shoot ratio (0.31), root length (3.82), number of roots per plant (37.08), root thickness (0.11), root volume (4.27) and root length density (0.03) ADT (R) 49 x Chandikar for 70 percent relative water content (8.85), dry root weight (18.03), dry shoot weight (40.55), root length (3.10), number of roots per plant (140.16) root thickness (0.38) and root volume (23.14) were found to be specific combiners for most of the drought tolerant traits. The cross combinations, viz., ADT 43 x Anna (R) 4, ADT (R) 49 x Chandikar and ADT 43 x PMK (R) 3 had highly significant standard heterosis. Breeding for drought tolerance in rice would be of immense value to the farmers economic health, family well-being and harmony in the society.

Author(s):  
S. R. Sahana ◽  
B. Mohanraju ◽  
K. R. Rekha ◽  
H. R. Raveendra ◽  
C. R. Nagesh ◽  
...  

Roots play a vital role in plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support. Some phenomenal literature supports several root characters which have relevance for stress adaptation. Root characteristics such as root length density, rooting depth and root distribution have been established as constituting factors of drought resistance. Under drought situation, roots can adapt to continued growth while at the same time, sending signals to shoot that exhibit growth an above ground parts of the plant. Development of plants with deep roots may in fact stimulate photosynthetic yields as these are considered to be more controlled by the carbon sinks of plants. In this context a field experiment was conducted during Kharif -2014 in the Department of Crop Physiology, to know the effect and variations in mutants of Rice for root and root associated traits along with growth and productivity besides a few relevant drought adaptive traits. The result revealed that, the root length ranged from 24.46 cm to 38.00 cm with a mean of 32.40 cm, while wild Type recorded 32.33 cm. Similarly, the root volume and root weight recorded 21.67cc to 65cc with a mean 35.51cc and 4 g to as high as 34.30 g with a mean of 17.13g when compared to Wild Type (27.92 cc and 18.49g respectively). The total dry matter production ranged from 16.39 g-1plant to 92.12 g-1plant with a mean of 52.73 g-1 plant while, the Wild type had a total dry matter production of 55.12 g-1plant. Mutants shows significant variations in root length, root volume, root weight and total dry matter production as compared to wild type and also observe the significant variation among the mutant. These mutants with higher growth character associated with root traits are potential mutant lines for further crop improvement programme.


Author(s):  
P Yogameenakshi ◽  
P Vivekanandan ◽  
N Nadarajan

The nature of gene action governing important quantitative traits viz.yield and drought tolerance in rice were studied through six parameter model of generation means analysis using six generations (viz., P1, P2, F1, F2, BC1 and BC2) of five crosses by imposing drought stress at reproductive stage. Additive gene action was noticed for the traits like days to flowering, panicle length, 100 grain weight and root thickness in majority of the crosses while the yield characters like productive tillers / plant, filled grains / panicle, harvest index and grain yield / plant and the drought tolerant characters like spikelet fertility, root length and root / shoot ratio were governed by dominance gene action. Both additive and dominance effects were found in panicle length in the cross Kallurundaikar / Moroberekan; spikelet fertility, dry root weight, root/shoot ratio and grain yield / plant in the cross Norungan / Moroberekan and 100 grain weight and root thickness in the cross PMK 2 / Moroberekan. Interaction effects mainly of additive x additive was noticed in panicle length, filled grains /panicle, dry root weight and root/shoot ratio in most of the crosses while dominance x dominance gene action was predominant in 100 grain weight and both additive x dominance and dominance x dominance in days to flowering and plant height.


Author(s):  
B. B. Adhikari ◽  
B. Mehera ◽  
S. M. Haefele

Rice (Oryza sativa L) is the most important staple food crop in Nepal, but current yields are low and total production varies, mostly due to drought. To evaluate high yielding and drought tolerant rice genotypes in typical rainfed lowland conditions, a participatory varietal selection trials was conducted with farmers in farmer’s field at Sundarbazar, Lamjung, Nepal during the wet season 2009 and 2010. Trials were laid out in a Randomized Complete Block Design with six replications. Results obtained from two years’ experiment indicated that the genotypes IR-74371-54-1 and IR74371-70-1 matured at the same duration as the local check Radha-4 (120-123 days growth duration). Both genotypes had a high average chlorophyll content (SPAD reading of 15.9-16.1), were medium tall (110-112 cm), non-lodging, had a high number of filled grains and little sterility, and a high grain yield (mean yield 5.0 and 4.8 t ha-1, respectively). They also had the highest root length (22.4-26.2 cm) and root weight (9.5-10 g hill-1) which could tolerate more drought than the other genotypes tested. The maximum cost/benefit ratio was found in IR-74371-54-1 (1:1.72) followed by IR-74371-70-1 (1:1.66) and IR-74371-46-1-1 (1:1.65). All three lines were highly preferred by farmers in preference rankings during field visits and were released in Nepal in 2011 as Sookhadhan-2, Sookhadhan-3 and Sookhadhan-1 varieties, respectively. They fit easily into the existing cropping system in rainfed lowlands, are economically viable and safe to cultivate for the farmers in the mid hills of Nepal.Journal of the Institute of Agriculture and Animal Science.Vol. 33-34, 2015, page: 195-206


2021 ◽  
Vol 23 (3) ◽  
pp. 257-264
Author(s):  
SHRUTHI REDDY L ◽  
GOPALA KRISHNA REDDY A ◽  
VANAJA. M ◽  
MARUTHI. V. ◽  
VANAJA LATHA. K.

An experiment was laid out to study the impact of eCO2 (550ppm), eT (+3ºC) and their interaction (eCO2+eT) on rooting behaviour of cuttings of three grape varieties- Thompson Seedless, Bangalore Blue, and Dogridge in FATE and OTC facilities. Observations were recorded at 50 and 80 days after planting (DAP) and root growth data was recorded and analysed using WinRHIZO root scanner and its software. Analysis revealed that, among the selected grape varieties, Thompson Seedless cuttings has shown highest number of roots, root volume and dry biomass under eCO2 and eCO2+ eT conditions, while total root length and root length density were highest with Bangalore Blue. Under eT condition, Bangalore Blue showed highest number of roots, total root length and root length density, while root volume and dry biomass was highest with Thompson Seedless. The per se values of root parameters under all conditions and their response to eCO2 was lowest with Dogridge. Though eT condition reduced all the root parameters, their performance improved under eCO2+ eT indicating the presence of higher concentration of CO2 reduced the ill effects of high temperature. Overall, eCO2 and eCO2+eT conditions improved root parameters of grape varieties, while eT reduced them as compared to their performance under ambient condition and varietal variation is significant.


2006 ◽  
Vol 46 (3) ◽  
pp. 337 ◽  
Author(s):  
G. M. Lodge ◽  
S. R. Murphy

Studies were undertaken on native and sown perennial grass-based pastures as part of the Sustainable Grazing Systems National Experiment to estimate root depth and describe root distribution in these pastures. Samples from soil cores (0–210 cm maximum sampling depth) taken in 1997 (before grazing treatments were imposed) and 4 years later in spring 2001 were used to examine the effects of different grazing regimes on root length density (cm/cm3), root mass density (mg/cm3), root volume density (cm3/cm3), and diameter (mm) at each of 3 sites. In spring 1997, mean maximum root depth was 107 cm for a native perennial grass pasture near Barraba and 74 cm for a pasture sown with phalaris (Phalaris aquatica) and subterranean clover (Trifolium subterraneum) near Nundle, with values being lower for a native pasture near Manilla (65 cm for a Brown Vertosol and 97 cm for a Red Chromosol). For all pasture types, >20% of root mass density, root length density or root volume density was in the 0–5 cm soil layer and >60% was at a depth of 0–30 cm. At all sites, mean total root mass was around 1000 kg DM/ha. After 4 years of grazing (spring 2001) there were relatively few significant effects of grazing treatment on root length density, root mass density, root volume density, or root diameter. Effects that were significant mostly occurred at 0–5 cm for the native pastures and 0–50 cm for the sown pasture. For the Barraba native pasture, root length, volume and mass densities (0–5 cm) were higher (P<0.05) in the continuously grazed, low stocking rate treatment compared with all other treatments. Similarly, for the Manilla native pasture, root length density was higher (P<0.05) in this treatment at soil depths of 0–5 and >5–10 cm compared with all other treatments. In contrast, for the Nundle sown pasture, root length density (0–5 cm) was lowest (P<0.05) in 2 continuously grazed treatments compared with those that were strategically grazed in autumn and spring.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1064e-1064 ◽  
Author(s):  
Edward F. Gilman ◽  
Michael E. Kane

Shoot and root growth were measured on Chinese juniper (Juniperus chinensis L.) Var. `Torulosa', `Sylvestris', `Pfitzeriana' and `Hetzii' 1, 2 and 3 years after planting into a simulated landscape from 10-liter black plastic containers. Mean diameter of the root system increased quadratically averaging 1, 2 m/year; whereas, mean branch spread increased at 0, 33 m/year, Three years after planting, root spread was 2, 75 times branch spread and roots covered an area 5.5 times that covered by the branches. Percentage of total root length located within the dripline of the plants remained fairly constant (71-77%) during the first 3 years following planting. Root length density per unit area increased over time but decreased with distance from the trunk. In the first 2 years after planting shoot weight increased faster than root `weight. However, during the third year after planting, the root system increased in mass and size at a faster rate than the shoots. Root length was correlated with root weight within root-diameter classes, Root spread and root area were correlated with trunk area, branch spread and crown area.


1991 ◽  
Vol 116 (4) ◽  
pp. 637-641 ◽  
Author(s):  
Edward F. Gilman ◽  
Michael E. Kane

Shoot and root growth were measured on Chinese juniper (Juniperus chinensis L. `Torulosa', `Sylvestris', `Pfitzeriana', and `Hetzii') 1, 2, and 3 years after planting from 1l-liter black plastic containers. Mean diameter of the root system expanded quadratically, whereas mean branch spread increased linearly. Three years after planting, root spread was 2.75 times branch spread, and roots covered an area 5.5 times that covered by the branches. Percentage of total root length located within the dripline of the plants remained fairly constant for each cultivar during the 3 years following planting. Root length density increased over time but decreased with distance from the trunk. During the first 2 years after planting, shoot mass increased faster than root mass. In the 3rd year, the root system increased in mass at a faster rate than the shoots. Root length was correlated with root weight. Root spread and root area were correlated with trunk cross-sectional area, branch spread, and crown area.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1394
Author(s):  
Larícia Olária Emerick Silva ◽  
Raquel Schmidt ◽  
Gustavo Pereira Valani ◽  
Adésio Ferreira ◽  
Ana I. Ribeiro-Barros ◽  
...  

Coffee breeding based on root traits is important to identify productive genotypes under adverse environmental conditions. This study assessed the diversity of root traits in Coffea canephora and its correlation with plant height and crop yield. Undisturbed soil samples were collected down to 60 cm from 43 coffee genotypes, in which one of them was propagated by seed and all others by stem cutting. The roots were washed, scanned, and processed to quantify root length density, root volume, root superficial area, and root diameter. Additionally, plant height and crop yield were also assessed. Root length density ranged from 40 to 1411 mm cm−3, root volume from 6 to 443 mm3 cm−3, root superficial area from 61 to 1880 mm2 cm−3, and root diameter from 0.6 to 1.1 mm. Roots were concentrated in the topsoil (0–20 cm) for most genotypes. In deeper depths (30–60 cm), root length density, root volume, and root superficial area were higher in genotypes 14, 25, 31, and 32. Positive correlations were found between root traits and both plant height and crop yield. The results of this work may contribute to the overall cultivation of C. canephora, specially for crop breeding in adverse environmental conditions.


1989 ◽  
Vol 113 (1) ◽  
pp. 41-49 ◽  
Author(s):  
S. C. Brown ◽  
P. J. Gregory ◽  
P. J. M. Cooper ◽  
J. D. H. Keatinge

SUMMARYGrowth and water use of kabuli-type chickpea was measured during the 1982/83 and 1983/84 growing seasons in northern Syria under rainfed conditions. Winter-sown (November) and springsown (March) crops of cv. ILC 482 were grown in 1982/83 while in 1983/84 spring-sown crops of contrasting genotypes (ILC 482, ILC 1929 and ILC 3279) were compared.In 1982/83, shoot dry matter and seed yields of the winter-sown crop were almost twice those of the spring-sown crop although the water use of both crops was almost the same. Root growth of both crops was most rapid before flowering but continued until maturity (early June) in the winter-sown and until mid to late pod filling (also early June) in the spring-sown crop. Root dry weight (c. 45 g/m2) and length (c. 45 cm/cm2) were similar in both crops during pod filling.In 1983/84, shoot weight, root weight and root length were similar in all genotypes but the later maturity of ILC 3279 resulted in lower seed yield and hence harvest index, and greater water use.The root length density decreased approximately logarithmically with depth in the soil profile although comparison between seasons and with other published results showed that the relations could not be used predictively. Water use efficiency was poorer in the second, drier season and was almost doubled by winter sowing.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 494A-494 ◽  
Author(s):  
T. Daw ◽  
T.J. Tworkoski ◽  
D.M. Glenn

Shoot growth of peach trees can be managed by manipulating edaphic conditions such as root volume and soil fertility. In this experiment, 2-year-old peach trees (Prunus persica L. cv. Sentry on `Lovell' rootstock) were planted in pots with a split root design, so that half the roots were not treated and the other half received one of four treatments: root volume restricted with polypropylene nonwoven fabric (FAB), fertilizer alone (FER), FAB + FER, and untreated control (UTC). Total shoot growth and root growth were measured, and root growth in the split halves was compared. FER increased leaf number and weight by 48% and 60%, respectively, but not stem growth. Leaf nitrogen concentration and photosynthesis were greatest in FER treatment. FAB did not affect shoot weight or reduce total root weight or length, although roots did not grow past the fabric barrier. FER increased root weight and length (116% and 57%, respectively, compared to UTC) on the treated half but did not affect root growth on the untreated half. Greatest root growth occurred in the root half that received FAB + FER, particularly in the 5-cm soil segment proximal to the fabric (4.6 cm•cm-3 compared to 0.8 cm.cm-3 in UTC). Shoot length was greater in FAB + FER than FAB. Thus, fertilizer applied near fabric increased root growth and the combination of fertilizer and fabric may be used to regulate shoot growth. Specific root length (root length per gram dry weight) was highest in trees with no treatment, suggesting root acclimation to low nutrient soil conditions. Lower specific root length resulted in soils that were fertilized. The results indicate that nonwoven fabric restricts root growth in peach trees and reduces shoot elongation. The combined effect of fabric plus selected application of fertilizer may be used to regulate growth of peach trees.


Sign in / Sign up

Export Citation Format

Share Document