Yield Stability in a Wide Range of Environments as a Primary Parameter in Winter Wheat Breeding

2020 ◽  
Vol 46 (6) ◽  
pp. 539-544
Author(s):  
A. I. Grabovets ◽  
M. A. Fomenko
Weed Science ◽  
2020 ◽  
pp. 1-10
Author(s):  
Muhammad Javaid Akhter ◽  
Per Kudsk ◽  
Solvejg Kopp Mathiassen ◽  
Bo Melander

Abstract Field experiments were conducted in the growing seasons of 2017 to 2018 and 2018 to 2019 to evaluate the competitive effects of rattail fescue [Vulpia myuros (L.) C.C. Gmel.] in winter wheat (Triticum aestivum L.) and to assess whether delayed crop sowing and increased crop density influence the emergence, competitiveness, and fecundity of V. myuros. Cumulative emergence showed the potential of V. myuros to emerge rapidly and under a wide range of climatic conditions with no effect of crop density and variable effects of sowing time between the two experiments. Grain yield and yield components were negatively affected by increasing V. myuros density. The relationship between grain yield and V. myuros density was not influenced by sowing time or by crop density, but crop–weed competition was strongly influenced by growing conditions. Due to very different weather conditions, grain yield reductions were lower in the growing season of 2017 to 2018 than in 2018 to 2019, with maximum grain yield losses of 22% and 50% in the two growing seasons, respectively. The yield components, number of crop ears per square meter, and 1,000-kernel weight were affected almost equally, reflecting that V. myuros’s competition with winter wheat occurred both early and late in the growing season. Seed production of V. myuros was suppressed by delaying sowing and increasing crop density. The impacts of delayed sowing and increasing crop density on seed production of V. myuros highlight the potential of these cultural weed control tactics in the long-term management programs of this species.


2015 ◽  
Vol 153 (8) ◽  
pp. 1353-1364 ◽  
Author(s):  
C. Y. ZHENG ◽  
J. CHEN ◽  
Z. W. SONG ◽  
A. X. DENG ◽  
L. N. JIANG ◽  
...  

SUMMARYTen leading varieties of winter wheat released during 1950–2009 in North China were tested in a free-air temperature increase (FATI) facility. The FATI facility mimicked the local air temperature pattern well, with an increase of 1·1 °C in the daily mean temperature. For all the tested varieties, warming caused a significant reduction in the total length of wheat growth period by 5 days and especially in the pre-anthesis period, where it was reduced by 9 days. However, warming increased wheat biomass production and grain yield by 8·4 and 11·4%, respectively, on an average of all the tested varieties. There was no significant difference in the warming-led reduction in the entire growth period among the tested varieties. Interestingly, the warming-led increments in biomass production and grain yield increased along with the variety release year. Significantly higher warming-led increases in post-anthesis biomass production and 1000-grain weight were found in the new varieties compared to the old ones. Meanwhile, a significant improvement in plant productivity was noted due to wheat breeding during the past six decades, while no significant difference in the length of entire growth period was found among the varieties released in different eras. The results demonstrate that historical wheat breeding might have enhanced winter wheat productivity and adaptability through exploiting the positive effects rather than mitigating the negative impacts of warming on wheat growth in North China.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shamseldeen Eltaher ◽  
P. Stephen Baenziger ◽  
Vikas Belamkar ◽  
Hamdy A. Emara ◽  
Ahmed A. Nower ◽  
...  

Abstract Background Improving grain yield in cereals especially in wheat is a main objective for plant breeders. One of the main constrains for improving this trait is the G × E interaction (GEI) which affects the performance of wheat genotypes in different environments. Selecting high yielding genotypes that can be used for a target set of environments is needed. Phenotypic selection can be misleading due to the environmental conditions. Incorporating information from phenotypic and genomic analyses can be useful in selecting the higher yielding genotypes for a group of environments. Results A set of 270 F3:6 wheat genotypes in the Nebraska winter wheat breeding program was tested for grain yield in nine environments. High genetic variation for grain yield was found among the genotypes. G × E interaction was also highly significant. The highest yielding genotype differed in each environment. The correlation for grain yield among the nine environments was low (0 to 0.43). Genome-wide association study revealed 70 marker traits association (MTAs) associated with increased grain yield. The analysis of linkage disequilibrium revealed 16 genomic regions with a highly significant linkage disequilibrium (LD). The candidate parents’ genotypes for improving grain yield in a group of environments were selected based on three criteria; number of alleles associated with increased grain yield in each selected genotype, genetic distance among the selected genotypes, and number of different alleles between each two selected parents. Conclusion Although G × E interaction was present, the advances in DNA technology provided very useful tools and analyzes. Such features helped to genetically select the highest yielding genotypes that can be used to cross grain production in a group of environments.


2017 ◽  
Vol 12 (1) ◽  
pp. 152-156 ◽  
Author(s):  
R. A. Graybosch ◽  
P. S. Baenziger ◽  
R. L. Bowden ◽  
F. Dowell ◽  
L. Dykes ◽  
...  

2021 ◽  
Author(s):  
Yunzhe Zhao ◽  
Xinying Zhao ◽  
Mengqi Ji ◽  
Wenqi Fang ◽  
Hong Guo ◽  
...  

Abstract Background: Fusarium head blight (FHB) is a disease affecting wheat spikes caused by Fusarium species, which leads to cases of severe yield reduction and seed contamination. Therefore, identifying resistance genes from various sources is always of importance to wheat breeders. In this study, a genome-wide association study (GWAS) focusing on FHB using a high-density genetic map constructed with 90K single nucleotide polymorphism (SNP) arrays in a panel of 205 elite winter wheat accessions, was conducted in 3 environments. Results: Sixty-six significant marker–trait associations (MTAs) were identified (P<0.001) on fifteen chromosomes explaining 5.4–11.2% of the phenotypic variation therein. Some important new genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 genetic positions were found in 2 environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci. Eight new candidate genes of FHB resistance were predicated in wheat. Of which, three genes: TraesCS5D01G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were important in defending against FHB by regulating chitinase activity, calcium ion binding, intramolecular transferase activity, and UDP-glycosyltransferase activity in wheat. In addition, a total of six excellent alleles associated with wheat scab resistance were discovered. Conclusion: These results provide important genes/loci for enhancing FHB resistance in wheat breeding populations by marker-assisted selection.


1978 ◽  
Vol 26 (4) ◽  
pp. 383-398 ◽  
Author(s):  
A. Darwinkel

The effect of plant density on the growth and productivity of the various ear-bearing stems of winter wheat was studied in detail to obtain information on the pattern of grain production of crops grown under field conditions. Strong compensation effects were measured: a 160-fold increase in plant density (5-800 plants/m2) finally resulted in a 3-fold increase in grain yield (282 to 850 g DM/m2). Max. grain yield was achieved at 100 plants/m2, which corresponded to 430 ears/m2 and to about 19 000 grains/m2. At higher plant densities more ears and more grains were produced, but grain yield remained constant. Tillering/plant was largely favoured by low plant densities because these allowed tiller formation to continue for a longer period and a greater proportion of tillers produced ears. However, at higher plant densities more tillers/unit area were formed and, despite a higher mortality, more ears were produced. The productivity of individual ears, from main stems as well as from tillers, decreased with increasing plant density and with later emergence of shoots. In the range from 5 to 800 plants/m2 grain yield/ear decreased from 2.40 to 1.14 g DM. At 800 plants/m2 nearly all ears originated from main stems, but with decreasing plant density tillers contributed increasingly to the number of ears. At 5 plants/m2, there were 23 ears/plant and grain yield/ear ranged from 4.20 (main stem) to 1.86 g DM (late-formed stems). Grain number/ear was reduced at higher densities and on younger stems, because there were fewer fertile spikelets and fewer grains in these spikelets. At the low density of 5 plants/m2, plants developed solitarily and grain yield/ear was determined by the number of grains/ear as well as by grain wt. Above 400 ears/m2, in this experiment reached at 100 plants/m2 and more, grain yield/ear depended solely on grain number, because the wt. of grains of the various stems were similar. The harvest index showed a max. of about 44% at a moderate plant density; at this density nearly max. grain yield was achieved. At low plant densities the harvest index decreased from 45% in main stems to about 36% in late-formed stems. However, no differences in harvest index existed between the various ear-bearing stems if the number of ears exceeded 400/m2. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2013 ◽  
Vol 55 (1) ◽  
pp. 233-246
Author(s):  
Ewa Mirzwa-Mróz ◽  
Czesław Zamorski

The response of Polish winter wheat genotypes to <i>M.graminicola</i> (preliminary experiments and cultivar collections) was observed in different regions of Poland. Observations were carried out in 1995-1999. The winter wheat genotypes showed a broad spectrum of reaction to this pathogen. Between 1997 and 1999 the highest degree of infection on winter wheat breeding lines was noted in Kończewice. During this time no genotypes free from infection were observed (preliminary breeding experiments). Cultivars with no symptoms of <i>Septoria tritici</i> blotch (Leszczyńska Wczesna and Żelazna) were found among old genotypes in Słupia Wielka only in earlier experiments (1995-1996). In the years 1997-1999 the winter wheat cultivars were classified into groups on the basis of their response to the pathogen. The degree of infection for the majority cultivars was quite high.


2007 ◽  
Vol 35 (2) ◽  
pp. 749-752
Author(s):  
Sonja Maric ◽  
Tihomir Cupic ◽  
Goran Jukic ◽  
Ivan Varnica ◽  
Dario Dunkovic

Sign in / Sign up

Export Citation Format

Share Document