Polyclonal Antibody Effects on the Human Cardiac 5-HT4(e)Receptors Depend Upon the Expression System

2004 ◽  
Vol 10 (3-4) ◽  
pp. 125-129
Author(s):  
Emmanuella Di Scala ◽  
Stéphanie Rose ◽  
Olivier Hérault ◽  
Jorge Argibay ◽  
Pierre Cosnay ◽  
...  
2004 ◽  
Vol 10 (3-4) ◽  
pp. 125-129 ◽  
Author(s):  
Emmanuella Scala ◽  
St�phanie Rose ◽  
Olivier H�rault ◽  
Jorge Argibay ◽  
Pierre Cosnay ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Xingang Yu ◽  
Auwalu Yusuf Abdullahi ◽  
Sheng Wu ◽  
Weida Pan ◽  
Xianli Shi ◽  
...  

To study prokaryotic expression and subcellular localization of α-13 giardin in Giardia lamblia trophozoites, α-13 giardin gene was amplified and cloned into prokaryotic expression vector pET-28a(+). The positive recombinant plasmid was transformed into E. coli BL21(DE3) for expression by using IPTG and autoinduction expression system (ZYM-5052). The target protein was validated by SDS-PAGE and Western blotting and purified by Ni-NTA Resin. Rabbits were immunized with purified fusion proteins for preparation of polyclonal antibody; then the intracellular location of α-13 giardin was determined by fluorescence immunoassay. The results showed that the length of α-13 giardin gene was 1038 bp, encoding a polypeptide of 345 amino acids. The expressed product was a fusion protein with about 40 kDa largely present in soluble form. The target protein accounted for 21.0% of total proteins after being induced with IPTG, while it accounted for 28.8% with ZYM-5052. The anti-α13-giardin polyclonal antibody possessed good antigenic specificity as well as excellent binding activity with recombinant α-13 giardin. Immunofluorescence assays revealed that α-13 giardin was localized in the cytoplasm of G. lamblia trophozoite, suggesting that it is a cytoplasm-associated protein. The present study may lay a foundation for further functional research on α-13 giardin of G. lamblia.


Author(s):  
Guodong Niu ◽  
Yingjun Cui ◽  
Xiaohong Wang ◽  
Yacob Keleta ◽  
Jun Li

Malaria transmission relies on parasite-mosquito midgut interaction. The interactive proteins are hypothesized to be ideal targets to block malaria transmission to mosquitoes. We chose 76 genes that contain signal peptide-coding regions and are upregulated and highly abundant at sexual stages. Forty-six of these candidate genes (60%) were cloned and expressed using the baculovirus expression system in insect cells. Six of them, e.g., PF3D7_0303900, PF3D7_0406200 (Pfs16), PF3D7_1204400 (Pfs37), PF3D7_1214800, PF3D7_1239400, and PF3D7_1472800 were discovered to interact with blood-fed mosquito midgut lysate. Previous works showed that among these interactive proteins, knockout the orthologs of Pfs37 or Pfs16 in P. berghei reduced oocysts in mosquitoes. Here we further found that anti-Pfs16 polyclonal antibody significantly inhibited P. falciparum transmission to Anopheles gambiae. Investigating these candidate proteins will improve our understanding of malaria transmission and discover new targets to break malaria transmission.


Author(s):  
Hang Xiao ◽  
Xin-Tian Nie ◽  
Xiao-Xia Ji ◽  
Shu-ping Yan ◽  
Bin Zhu ◽  
...  

AbstractIn this paper, ACE2 gene of pigs was cloned and the purified protein was obtained via the prokaryotic expression system. Polyclonal antibody of high titer and sensitivity was obtained using Wastar rats immunization method and is then used to determine of the expression of ACE2 using immunohistochemistry. The sequence of ACE2 in pigs covered 2418 nucleotides and coded 805 amino acid (aa) residues. Sequence homology analysis showed that the ACE2 sequence in pigs is highly conserved among species at the nucleotide and amino acid levels. Genetic evolution analysis revealed that ACE2 gene in pigs has the shortest genetic distance with that in goats while residing in a totally different branch from that in zebra fishes. Analysis of protein structure predicted that ACE2 protein is a transmembrane secreted protein with high hydrophilicity, containing a signal peptide sequences locating between 1aa to 17aa. The ACE2 fusion protein expressed (under the induction with 1.0 mmol/L IPTG for 10 h) was of approximately 100 kDa and mainly existed in inclusion body. Wastar rats immunization showed that the titer of the anti-ACE2 antiserum in rats was 1: 3200. Western blot showed that the antibody binds specifically. Immunohistochemistry showed that the ACE2 protein was expressed in all major tissues of pigs. It is the first time that polyclonal antibody of ACE2 in pigs was obtained and the expression of ACE2 was confirmed. These results will provide a basis for investigating on ACE2’s biological activity in pigs.


1992 ◽  
Vol 68 (02) ◽  
pp. 119-124 ◽  
Author(s):  
F G Falkner ◽  
P L Turecek ◽  
R T A MacGillivray ◽  
W Bodemer ◽  
F Scheiflinger ◽  
...  

SummaryWe have worked out an efficient and time saving procedure for the expression of recombinant human prothrombin. The glycoprotein was expressed in the vaccinia virus expression system in several mammalian cell lines. The kidney cell lines Vero and BHK and the human cell line Hela were found to efficiently secrete prothrombin. Expression levels of 3–4 µg of factor II per 106 cells per day corresponding to 18–23 mU per 106 cells per day were achieved. Since the expression levels obtained with the vaccinia virus/Vero cell system were comparable to those obtained in amplified transformed CHO cells it provides an alternative system for the efficient expression of human prothrombin and may allow to further elucidate structure-function relationships of (pro)thrombin and its various effectors.


2020 ◽  
Vol 21 (1) ◽  
pp. 6-9
Author(s):  
Wuye Ria Andayanie

Soybean superior varieties with high yields and are resistant to abiotic stress have been largely released, although some varieties grown in the field are not resistant to SMV. In addition, the opportunity to obtain lines of hope as prospective varieties with high yield and resistance to SMV is very small. The method for evaluating soybean germplasm is based on serological observations of 98 accessions of leaf samples from SMV inoculation with T isolate. The evaluation results of 98 accessions based on visual observations showed 31 genotypes reacting very resistant or healthy to mild resistant category to SMV T isolate  with a percentage of symptom severity of 0 −30 %. Among 31 genotypes there are 2 genotypes (PI 200485; M8Grb 44; Mlg 3288) with the category of visually very resistant and resistant, respectively and  Mlg 3288  with the category of mild resistant.  They have a good agronomic appearance with a weight of 100 seeds (˃10 g) and react negatively with polyclonal antibodies to SMV, except Mlg 3288 reaction is not consistent, despite the weight of 100 seeds (˃ 10 g). Leaf samples from 98 accessions revealed various symptoms of SMV infection in the field. This diversity of symptoms is caused by susceptibility to accession, when infection occurs, and environmental factors. Keywords—: soybean; genotipe; Soybean mosaic virus (SMV); disease severity; polyclonal  antibody


2018 ◽  
Vol 9 (03) ◽  
pp. 20204-20223
Author(s):  
Maghsoudi, Hossein ◽  
U Pati

In this study, we expressed and purified the recombinant baculovirus 373 K/E p53 protein in a baculovirus expression system to characterize this mutant and compare it with wild type p53. Gel- filtration chromatography and chemical cross-linking experiments indicated that purified recombinant baculovirus 373 K/E p53 protein assembles into multimeric forms ranging from tetramers to polymers. Gel-mobility shift assays and protein-DNA cross-linking studies demonstrated that the recombinant protein binds, to a consensus DNA target as a dimer but that additional p53 mutant molecules may then associate with the preformed p53-dimer-DNA complexes to form a larger p53_DNA complexes. These observations suggest that the p53 mutant tetramers and polymers that forms the minimal p53 mutant complex in solution dissociated upon DNA binding to form p53 mutant dimmer DNA complexes. The DNA binding activity of this mutant was then investigated using electrophoretic mobility shift assays as well as supershift assay with anti-p53 antibodies. Binding of the anti-p53 antibody PAb421to the oligomerization promoting domain on p53 stimulated the sequential formation of both the p53_dimer DNA and larger p53-DNA complexes


Author(s):  
Rafid A. Abdulkareem

The main goal of the current study was cloning and expression of the human insulin gene in Pichia pastoris expression system, using genetic engineering techniques and its treatment application. Total RNA was purified from fresh normal human pancreatic tissue. RNA of good quality was chosen to obtain a first single strand cDNA. Human preproinsulin gene was amplified from cDNA strand, by using two sets of specific primers contain EcoR1 and Notl restriction sites. The amplified preproinsulin gene fragment was double digested with EcoRI and Not 1 restriction enzymes, then inserted into pPIC9K expression vector. The new pPIC9K-hpi constructive expression vector was transformed by the heat-shock method into the E.coli DH5α competent cells. pPic9k –hpi, which was propagated in the positive transformant E. coli cells, was isolated from cells and then linearised by restriction enzyme SalI, then transformed into Pichia pastoris GS115 using electroporation method. Genomic DNA of His+ transformants cell was extracted and used as a template for PCR analysis. The results showed, that the pPic9k – hpi was successfully integrated into the P. pastoris genome, for selected His+ transformants clones on the anticipated band at 330 bp, which is corresponded to the theoretical molecular size of the human insulin gene. To follow the insulin expression in transformans, Tricine–SDS gel electrophoresis and Western blot analysis were conducted. The results showed a successful expression of recombinant protein was detected by the presence of a single major band with about (5.8 KDa) on the gel. These bands correspond well with the size of human insulin with the theoretical molecular weight (5.8 KDa).


Sign in / Sign up

Export Citation Format

Share Document