scholarly journals Application of MT dan Gravity Method to Potential Analysis of Kepahiang Geothermal Bengkulu

2018 ◽  
Author(s):  
ahmad zarkasyi ◽  
Boko Nurdiyanto ◽  
yunus daud

An analysis of geothermal potential in Kepahiang-Bengkulu area using gravity and MT measurements of PSDG has been done. The analysis was conducted on 286 gravity points and 37 MT points spread over the southern part of Mount Kaba to Babakan Bogor hot springs. Kepahiang geothermal system is related to the volcanic activity of Mount Kaba which is still preserving the residual heat from the magma. Based on the gravity residual anomaly, the structure that controls the emerging Sempiang hot springs is estimated to be Sempiang fault that in near north-south direction, while Babakan Bogor hot springs is estimated to be controlled by the Sumatra fault. The cap rocks scatter around Sempiang hot springs start from nearground surface with thickness of between 1500 meters to 2500 meters. Cap rock is a unit of Young Lava of Kaba with resistivity < 10 Ohm-m and density is 2.2 gr/cm3. Geothermal reservoir is estimated to be located under the cap rocks scatter around Sempiang hot prings as indicated by values of 10-60 Ohm-m in resistivity and density is 2.4 gr/cm3. The top of reservoir is estimated to be 1500 meters below the ground surface, these rocks are volcanic products of Old Kaba in form of either lava or pyroclastic. Kepahiang geothermal prospect area scatters 19 km2 wide around Sempiang hot springs which is bound by contrast resistivity and fault. It has potential geothermal of 133 MWe with the assumption of reservoir temperature (geochemistry) is 2500C. Calculation of geothermal potential is included in the classification of expected reserves, as well as the extent and thickness of reservoir rock and fluid physical parameters are estimated based on data integrated geosciences detail depicted in the model tentatively.

2018 ◽  
Vol 35 (2) ◽  
pp. 116-141 ◽  
Author(s):  
Erika Almirudis ◽  
Edgar R. Santoyo-Gutiérrez ◽  
Mirna Guevara ◽  
Francisco Paz-Moreno ◽  
Enrique Portugal

A promissory low-to-medium temperature geothermal system located in Sonora (Mexico) has been studied. In the present work, a detailed geochemical survey was carried out to understand the hydrogeochemical signatures of hot spring waters. A field work campaign was conducted for collecting water samples from twelve hot springs placed in four major zones (NW, NE, C, and S). The collected samples were analysed by chemical and isotopic methods for determining their chemical (major and trace elements) and isotopic (18O/16O and D/H) compositions. Using geochemometric analyses of the fluid composition and fractionation, depletion and enrichment processes exhibited by major and trace elements were analysed. Hydrogeochemical classification was used to indicate the presence of sodium-sulphate (Na-SO4) waters in the North (NW and NE) and South hydrothermal zones; whereas calcium-magnesium-bicarbonate (Ca-Mg-HCO3) waters were identified for the Central zone. Some hot spring waters located in the NE zone were also typified as sodium-bicarbonate (Na-HCO3). In relation to the isotopic signatures of 18O/16O and D/H, four water samples from NE and C zones lie near to the global meteoric water line; whereas the remaining eight samples showed a shift for both oxygen and deuterium isotopes. A mixing line with a small shift of δ18O was identified and used as a proxy to discriminate waters with different isotopic signatures. After applying a geochemometric outliers detection/rejection and an iterative ANOVA statistical test, the mean temperature inferred from the most reliable solute geothermometers was 149±40 °C, which suggests to be considered as the minimum value of the reservoir temperature. As most of the hot spring waters fall outside of the full equilibrium curve, the original reservoir conditions were corrected by using a mixing conductive model, which predicted a deep equilibrium temperature of 210±11 °C. As this temperature is considerably higher than the mean temperature inferred from the geothermometers, it was suggested as an optimistic maximum reservoir temperature of the Sonora geothermal system. Using 150 °C and 200 °C as rounded-off reservoir temperatures (or min-max estimates), geochemical equilibria modelling based on fluid-mineral stability diagrams was carried out. An equilibrium process among local hydrothermal waters and albite-potassium feldespar and muscovite-prehnite-laumontite mineral assemblages was found. These minerals were proposed as representative mineral assemblages of low-grade metamorphism, which seems to indicate that the geothermal fluid equilibria were probably reached within the intermediate to acidic volcanic rocks from the Tarahumara Formation.


2020 ◽  
Vol 5 (2) ◽  
pp. 44-54
Author(s):  
Dian Nur Rizkiani ◽  
Rustadi Rustadi

The research of gravity on Suwawa Sub-District geothermal is done for the purposes to determine fault structure using Second Vertical Derivative (SVD) technique, create a 2D subsurface model and 3D tentative model using regional anomaly data, and interpreting Suwawa geothermal system. Data processing is done in the research include: drift correction, terrain correction, free air correction, complete Bouguer anomaly, spectral analysis, SVD analysis, 2D modeling and 3D inversion modeling and tentative model. The research results showed that the research area has low Bouguer anomaly with a range of 75.8 to 79.5 mGal values in the West and Southeast, while high anomaly with a range of 90.9 to 111.2 mGal values in the Northern and Southern, there is correlation of fault based on SVD analysis with geological fault that indicate the presence of Libungo hot springs, the inversion results indicate the presence of low density (ρ = 1.8 g/cc) which is an alluvial rocks and high density (ρ = 2.9 g/cc) which is Andesite Lava rocks, 3D tentative modeling indicate the presence of reservoir is at a depth of 2 km from the ground surface. Based on the model created, Cap Rock is located on Andesite Lava rocks with ρ = 2.9 g/cc at a depth of 1200 m and Heat Source located at a depth of 2000 m.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 141
Author(s):  
Oktoberiman . ◽  
Dimas Aji Ramadhan P ◽  
Fajar Rizki W ◽  
Rizal Tawakal A

<p>Insufficient of conventional energy production today in Indonesia, encouraging all elements to discover an alternative energy. Geothermal is one of big potential alternative energy in Indonesia regarding the conditon of geological setting in Indonesia which has 129 active volcanoes. Bantarkawung is located in the western of Mount Slamet where hot spring occured as geothermal manifestation. This indicate geothermal potential in that area. This research is aimed to identify geothermal potential that lies in bantarkawung using Fault Fracture Density (FFD), Geological Mapping and Geochemical analysis. Based on FFD analysis known that anomaly area is located at central and northeast of research area, and based on geological mapping known that area composed by mudstone unit and sandstone unit, water temperature of research area is 43 °C to 62 °C, by using geochemical analysis of major ions HCO3-,Cl-,S042- known that the type of hot water is bicarbonate water which characterized as an outflow zone of geothermal system. </p><p><strong>Keywords</strong>: Bantarkawung; FFD; geochemichal analysis; geothermal; hot springs</p>


2019 ◽  
Vol 2 (2) ◽  
pp. 50
Author(s):  
Isao Takashima ◽  
Dwi Fitri Yudiantoro

Pandan volcano is a volcano formed on Tertiary sedimentary rocks from the Kendeng zone deposited in the basin of East Java. In addition to generating petroleum potentials, such as Cepu and Bojonegoro oil fields, this area also generates geothermal potential. As a source of heat from the geothermal system is igneous rock formed from the magmatism process. The type of rock formed by the process of magmatism in the Pandan geothermal system is basaltic-andesitic and hornblende andesite are medium-high K calk alkaline affinity located in the island arc. The interaction of hot rock from post magmatism process with hydrothermal fluid resulted in the manifestation of hot springs and calcite travertine in the study area. Prediction of the subsurface temperature of hot water from geothermometer silica analysis contained in Banyukuning and Jarikasinan show cristobalite Beta equilibrium (70oC) and quartz temperature (120oC). To study about magmatism and geothermal fluid using petrographic method and petrochemical analysis (X-ray fluorescence spectrometry method) to the sample of igneous rock. While to study the fluid type and geothermometer of geothermal fluid using data from previous researchers. This research study is expected to provide additional information on the field of geothermal and magmatism in this area.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yanyan Hou ◽  
Zheming Shi ◽  
Wenqing Mu

The geochemical and geothermal characteristics of hydrothermal systems in an area are useful information to appropriately evaluate the geothermal potential. In this paper, we investigated the chemical and isotopic composition of thermal water in an underexploited geothermal belt, Yidun-Litang area, in eastern Tibetan Plateau. 24 hot spring samples from the Yidun and Litang area were collected and analyzed. The water chemical types of the hot springs are mainly Na-HCO3-type water. Water-rock interaction and cation exchange and mixture are the dominant hydrogeochemical processes in the hydrothermal evolution. The significant shift of D and 18O isotopes from the GMWL indicates that these springs have undergone subsurface boiling before rising to the surface. Different ratios of Cl to other conservation species can be found for the springs in Litang and Yidun areas, suggesting the different heat sources of the two hydrothermal systems. The reservoir temperature in the Yidun area is around 230°C while the reservoir temperature in the Litang area is around 200°C. Both hydrothermal systems are recharged by the meteoric water and are heated by the different deep, thermally and topographically driven convection heat along faults and undergoing subsurface boiling before going back to the surface.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2473
Author(s):  
Hung-Hsiang Hsu ◽  
Hsin-Fu Yeh

The Tatun geothermal system is located in Northern Taiwan and is hosted by the Tatun volcano group (TVG). The variation in the geochemical composition of thermal waters is considered to be an important indicator of volcanic activity. In this study, we analyzed the chemical and isotopic compositions of hot springs in the TVG. A chemical and multicomponent geothermometer was used to estimate the reservoir temperature, and hydrogen and oxygen isotopes were used to determine the source of the thermal water. The presence of thick andesite and fractures allowed the formation of different type of springs in the center close each other with lower temperatures and acidic springs with higher temperatures at the northeast and southwest sides of the Tatun geothermal field. The saturation index showed that the concentration of SiO2 in the thermal water was controlled by quartz. The multicomponent geothermometer indicated a reservoir temperature between 130 °C and 190 °C, and the geothermal water in Longfengku, Lengshniken, Matsao and Szehuangping may have mixed with shallow groundwater. Isotope data indicated that the stream water and groundwater originated from meteoric water, and the spring water showed a significant oxygen shift, due to water–rock interaction and evaporation. The isotopes of the fluid in the TVG are also affected by the seasonal monsoon. These results can serve as a reference for designing a conceptual model of the spring in the Tatun geothermal system.


2018 ◽  
Vol 45 ◽  
pp. 281-287 ◽  
Author(s):  
Leandra M. Weydt ◽  
Kristian Bär ◽  
Chiara Colombero ◽  
Cesare Comina ◽  
Paromita Deb ◽  
...  

Abstract. The Los Humeros geothermal system is steam dominated and currently under exploration with 65 wells (23 producing). Having temperatures above 380 ∘C, the system is characterized as a super hot geothermal system (SHGS). The development of such systems is still challenging due to the high temperatures and aggressive reservoir fluids which lead to corrosion and scaling problems. The geothermal system in Acoculco (Puebla, Mexico; so far only explored via two exploration wells) is characterized by temperatures of approximately 300 ∘C at a depth of about 2 km. In both wells no geothermal fluids were found, even though a well-developed fracture network exists. Therefore, it is planned to develop an enhanced geothermal system (EGS). For better reservoir understanding and prospective modeling, extensive geological, geochemical, geophysical and technical investigations are performed within the scope of the GEMex project. Outcrop analogue studies have been carried out in order to identify the main fracture pattern, geometry and distribution of geological units in the area and to characterize all key units from the basement to the cap rock regarding petro- and thermo-physical rock properties and mineralogy. Ongoing investigations aim to identify geological and structural heterogeneities on different scales to enable a more reliable prediction of reservoir properties. Beside geological investigations, physical properties of the reservoir fluids are determined to improve the understanding of the hydrochemical processes in the reservoir and the fluid-rock interactions, which affect the reservoir rock properties.


2021 ◽  
Vol 5 (2) ◽  
pp. 539-543
Author(s):  
Reza Firdaus ◽  
Siska Oktaviyani ◽  
Putri Hardianti ◽  
Tri Kusmita ◽  
Anisa Indriawati

Abstract   Geothermal manifestations on Bangka Island are found in the villages of Terak, Pemali, Sungailiat/Pelawan, Dendang, Permis, and Nyelanding. The manifestation of hot water in Terak Village, Central Bangka Regency is in the form of 3 hot springs with a surface temperature of 55ᵒC this research is to be carried focus on the structure of the subsurface rock layers using the geophysical method, namely the gravity method. The data used are topography and Free Air Anomaly. The data processing is in the form of Bouguer Correction and Terrain Correction to obtain the Complete Bouguer Anomaly (CBA) value. Then the CBA value is separated from regional anomalies and residual anomalies using the upward continuation method, as well as 2D modeling interpretation (forward modeling). From the research results, it is known that the subsurface rock structure of the non-volcanic geothermal system in Terak Village in the form of sandstone (2.28 – 2.49 gr/cm3) at a depth of 0 – 1.44 km is estimated as caprock, granite (2.77 – 2.78 gr/cm3) at a depth of 0 – 1.8 km is estimated as reservoir rock, and diorite rock (2.87 – 2.99 gr/ cm3) at a depth of 0 – 2 km is estimated as basement rock.    


2014 ◽  
Vol 13 (3) ◽  
Author(s):  
Agustinus Denny Unggul Raharjo

<p class="BodyA">South Manokwari Regency is a new autonomous region in West Papua Province with abundant natural resources. As a new autonomous region South Manokwari Regency will be experiencing significant population growth. Population growth along with development and modernization will give burden to electricity demand. Alternatively, electricity can be provided with geothermal resources in Momiwaren District. Based on survey conducted by the government through the Geology Resources Centre in 2009, the reservoir temperature of the geothermal sources is 84<sup>o</sup>C with non volcanic geothermal system. Thus, the geothermal resources in South Manokwari Regency could be developed into binary cycle electric generator.</p>


Sign in / Sign up

Export Citation Format

Share Document