scholarly journals Investigating the determinants of successful budgeting with SVM and Binary models

2021 ◽  
Author(s):  
Naveen Kunnathuvalappil Hariharan

Learning the determinants of successful project budgeting is crucial. This research attempts toempirically find the determinants of a successful budget. To find this, this work applied threedifferent supervised machine learning algorithms for classification: Support Vector Machine(SVM), Logistic regression, and Probit regression with data from 470 projects. Five featureshave been selected: coordination, participation, budget control, communication, andmotivation. The SVM analysis results showed that SVM could predict successful and failedbudgets with fairly good accuracy. The results from Logistic and Probit regression showed thatif managers properly focus on coordination, participation, budget control, and communication,the probability of success in project-budget increases.

2018 ◽  
Author(s):  
Nazmul Hossain ◽  
Fumihiko Yokota ◽  
Akira Fukuda ◽  
Ashir Ahmed

BACKGROUND Predictive analytics through machine learning has been extensively using across industries including eHealth and mHealth for analyzing patient’s health data, predicting diseases, enhancing the productivity of technology or devices used for providing healthcare services and so on. However, not enough studies were conducted to predict the usage of eHealth by rural patients in developing countries. OBJECTIVE The objective of this study is to predict rural patients’ use of eHealth through supervised machine learning algorithms and propose the best-fitted model after evaluating their performances in terms of predictive accuracy. METHODS Data were collected between June and July 2016 through a field survey with structured questionnaire form 292 randomly selected rural patients in a remote North-Western sub-district of Bangladesh. Four supervised machine learning algorithms namely logistic regression, boosted decision tree, support vector machine, and artificial neural network were chosen for this experiment. A ‘correlation-based feature selection’ technique was applied to include the most relevant but not redundant features into the model. A 10-fold cross-validation technique was applied to reduce bias and over-fitting of the data. RESULTS Logistic regression outperformed other three algorithms with 85.9% predictive accuracy, 86.4% precision, 90.5% recall, 88.1% F-score, and AUC of 91.5% followed by neural network, decision tree and support vector machine with the accuracy rate of 84.2%, 82.9 %, and 80.4% respectively. CONCLUSIONS The findings of this study are expected to be helpful for eHealth practitioners in selecting appropriate areas to serve and dealing with both under-capacity and over-capacity by predicting the patients’ response in advance with a certain level of accuracy and precision.


2021 ◽  
Vol 9 (1) ◽  
pp. 215-223
Author(s):  
Prateek Mishra, Dr.Anurag Sharma, Dr. Abhishek Badholia

Adverse effects can be seen in the entire body due to the major disorders known as Diabetes. The risk of dangers like diabetic nephropathy, cardiac stroke and other disorders can increase severally because of the undiagnosed diabetes. Around the globe the people are suffering from this disease. For a healthy life early detection of this disease is very curtail. As the causes of the diabetes is increasing rapidly this disease might turn up as a reason for worldwide concern. Increasing the chances for a more accurate predictions and form experiences automatic learning by computational method may be provided by Machine Learning (ML). With the help of R data manipulation tool for trends development and with risk factor patterns detection in Pima Indian diabetes technique of machine learning is been used in the current researches. With the use of R data manipulation tool analysis and development five different predictive models is done for the categorization of patients into diabetic and non- diabetic.  supervised machine learning algorithms namely multifactor dimensionality reduction (MDR), k-nearest neighbor (k-NN), artificial neural network (ANN) radial basis function (RBF) kernel support vector machine and linear kernel support vector machine (SVM-linear) are used for this purpose.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


2020 ◽  
Vol 10 (15) ◽  
pp. 5047 ◽  
Author(s):  
Viet-Ha Nhu ◽  
Danesh Zandi ◽  
Himan Shahabi ◽  
Kamran Chapi ◽  
Ataollah Shirzadi ◽  
...  

This paper aims to apply and compare the performance of the three machine learning algorithms–support vector machine (SVM), bayesian logistic regression (BLR), and alternating decision tree (ADTree)–to map landslide susceptibility along the mountainous road of the Salavat Abad saddle, Kurdistan province, Iran. We identified 66 shallow landslide locations, based on field surveys, by recording the locations of the landslides by a global position System (GPS), Google Earth imagery and black-and-white aerial photographs (scale 1: 20,000) and 19 landslide conditioning factors, then tested these factors using the information gain ratio (IGR) technique. We checked the validity of the models using statistical metrics, including sensitivity, specificity, accuracy, kappa, root mean square error (RMSE), and area under the receiver operating characteristic curve (AUC). We found that, although all three machine learning algorithms yielded excellent performance, the SVM algorithm (AUC = 0.984) slightly outperformed the BLR (AUC = 0.980), and ADTree (AUC = 0.977) algorithms. We observed that not only all three algorithms are useful and effective tools for identifying shallow landslide-prone areas but also the BLR algorithm can be used such as the SVM algorithm as a soft computing benchmark algorithm to check the performance of the models in future.


Author(s):  
Prathima P

Abstract: Fall is a significant national health issue for the elderly people, generally resulting in severe injuries when the person lies down on the floor over an extended period without any aid after experiencing a great fall. Thus, elders need to be cared very attentively. A supervised-machine learning based fall detection approach with accelerometer, gyroscope is devised. The system can detect falls by grouping different actions as fall or non-fall events and the care taker is alerted immediately as soon as the person falls. The public dataset SisFall with efficient class of features is used to identify fall. The Random Forest (RF) and Support Vector Machine (SVM) machine learning algorithms are employed to detect falls with lesser false alarms. The SVM algorithm obtain a highest accuracy of 99.23% than RF algorithm. Keywords: Fall detection, Machine learning, Supervised classification, Sisfall, Activities of daily living, Wearable sensors, Random Forest, Support Vector Machine


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms


2021 ◽  
Vol 15 (23) ◽  
pp. 136-147
Author(s):  
Hajar A. Alharbi ◽  
Hessa I. Alshaya ◽  
Meshaiel M. Alsheail ◽  
Mukhlisah H. Koujan

The graduation projects (GP) are important because it reflects the academic profile and achievement of the students. For many years’ graduation projects are done by the information technology department students. Most of these projects have great value, and some were published in scientific journals and international conferences. However, these projects are stored in an archive room haphazardly and there is a very small part of it is a set of electronic PDF files stored on hard disk, which wastes time and effort and cannot benefit from it. However, there is no system to classify and store these projects in a good way that can benefit from them. In this paper, we reviewed some of the best machine learning algorithms to classify text “graduation projects”, support vector machine (SVM) algorithm, logistic regression (LR) algorithm, random forest (RF) algorithm, which can deal with an extremely small amount of dataset after comparing these algorithms based on accuracy. We choose the SVM algorithm to classify the projects. Besides, we will mention how to deal with a super small dataset and solve this problem.


Author(s):  
Ms. Sarika Tyagi

Fake news always has been a problem. We, too, might have fallen for a false rumor at least once in our lifetime. Moreover, the fight against fake news over social networking media is intricate. Misinformation related to home remedies for COVID 19 that have not been verified, fake news for lockdown extension or release, casualties and damage in any riots, fake consultancies, and conspiracy were prevalent during the lockdown. Many Researchers have implemented several algorithms for the detection of Fake News. In this paper, we have used several past published research papers along with our research to compare the performances of three algorithms, i.e., Naive Bayes classifier, Logistic Regression, and Support Vector Machine. This provides an idea of the most practical and efficient algorithm, Support Vector Machine, that can be used for fake news detection.


Sign in / Sign up

Export Citation Format

Share Document