Comparative study on batch equilibrium biosorption of Cd(II), Pb(II) and Zn(II) using plantain (Musa paradisiaca) flower: kinetics, isotherm, and thermodynamics

2019 ◽  
Author(s):  
Chem Int

The potential of plantain (Musa paradisiaca) flower to remove Cd(II), Pb(II) and Zn(II) from aqueous solutions has been investigated under different process parameters like pH, contact time, biomass dose and initial metal ion concentration. The optimum pH for the biosorption of each of the metal ions is pH 6. The kinetic data obtained were subjected to four kinetic models, among which the pseudo-second order kinetic model was found to be the best model that describes the biosorption of each of the metal ions. The equilibrium sorption data were fitted into Langmuir, Freundlich, Temkin and D-R isotherms. In each case, the Freundlich isotherm model gave the best fit giving the sorption intensity (n) values of 1.17, 0.91 and 0.90 which indicate favourable sorption of Cd(II), Pb(II) and Zn(II), respectively. The heat of the sorption process was estimated from Temkin Isotherm model and the mean free energy was estimated from D-R isotherm model to be 312.81Jmol-1, 223.61Jmol-1 and 316.55Jmol-1 for Cd(II), Pb(II) and Zn(II), respectively. Thermodynamically, the biosorption of each of the metal ions is endothermic and the order of spontaneity of the biosorption process being Cd(II) > Zn(II) > Pb(II). Similarly, positive change in entropy was observed for each, the order of disorderliness is Cd(II) > Zn(II) = Pb(II).

2019 ◽  
Author(s):  
Chem Int

The equilibrium, kinetics, and thermodynamics of the biosorption of Pb(II), Cd(II) and Zn(II) onto groundnut (Arachis hypogaea) shell were investigated under various physicochemical parameters. Optimisation studies were carried out using batch biosorption studies. The extent of the metal ion biosorption increased with increase in solution pH, initial metal ion concentration, dosage of biosorbent and contact time but decreased with the temperature of the system. The biosorption of each of the metal ions was found to be pH-dependent. Kinetic study showed that the metal ions biosorption process followed the pseudo-second-order kinetic model. The sorption of each metal ion was analysed with Freundlich and Langmuir isotherm models, in each case, the equilibrium data were better represented by Freundlich isotherm model. Thermodynamically, parameters such as standard Gibbs free energy (ΔG˚), standard enthalpy (ΔH˚), standard entropy (ΔS˚) and the activation energy (A) were calculated. The biosorption of each metal ion was spontaneous and the order of spontaneity of the biosorption process being Cd(II) > Zn(II) > Pb(II). Similarly, change in entropy was observed for each and the order of disorder is Cd(II) > Zn(II) > Pb(II).


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2019 ◽  
Author(s):  
Chem Int

An easy route for preparation emulsion of kaolinite (Al2Si2O5.4H2O) from Sweileh sand deposits, west Amman, Jordan by hydrochloric acid under continuous stirring for 4 h at room temperature was performed and nano kaolinite powder was used as an adsorbent for the removal of Cu(II), Zn(II) and Ni(II) ions. Nano kaolinite was characterized by XRD, FT-IR and SEM techniques. Effect of pH, adsorbent dose, initial metal ion concentration, contact time and temperature on adsorption process was examined. The negative values of ΔGo and the positive value of ΔHo revealed that the adsorption process was spontaneous and endothermic. The Langmuir isotherm model fitted well to metal ions adsorption data and the adsorption capacity. The kinetic data provided the best correlation of the adsorption with pseudo-second order kinetic model. In view of promising efficiency, the nano kaolinite can be employed for heavy metal ions adsorption.


2013 ◽  
Vol 3 (3) ◽  
pp. 239-248
Author(s):  
Mojisola O. Nkiko ◽  
Abideen I. Adeogun ◽  
N. A. Adesola Babarinde ◽  
Oluwabunmi J. Sharaibi

Biosorbent prepared from the scale of croaker fish (Genyonemus lineatus) has been used for the removal of Pb(II) ion from aqueous solution in a batch system. The effects of some important parameters such as pH, initial metal concentration, temperature and biosorbent dosage on biosorption capacity were investigated. Equilibrium time for the biosorption process is 20 and 30 min at lower and higher concentrations, respectively. The process at 28 °C is in agreement with a pseudo-second-order kinetics model. The equilibrium data obeyed the Langmuir adsorption isotherm with a maximum monolayer adsorption capacity of 14.58 mg g−1. The study showed that the sorption process depends on biomass dosage, temperature, pH and initial metal ion concentration. The calculated thermodynamics parameters (ΔGo, ΔHo and ΔSo) indicated that the biosorption of the metal ion onto fish scale is feasible, spontaneous and exothermic in nature.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Hamid Raza ◽  
Aqsa Sadiq ◽  
Umar Farooq ◽  
Makshoof Athar ◽  
Tajamal Hussain ◽  
...  

Batch scale studies for the adsorption potential of novel biosorbentPhragmites karka(Trin), in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R) model, Freundlich isotherm, and Langmuir isotherm were applied. The values ofqmaxfor natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both naturalP. karkaand treatedP. karka.RLvalues indicate that comparatively treatedP. karkawas more feasible for mercury adsorption compared to naturalP. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.


2021 ◽  
Vol 13 (11) ◽  
pp. 6390
Author(s):  
Yasser A. El-Amier ◽  
Ashraf Elsayed ◽  
Mohamed A. El-Esawi ◽  
Ahmed Noureldeen ◽  
Hadeer Darwish ◽  
...  

In this study, a natural low-coast, efficient, and eco- bio-sorbent plant material (Ludwigia stolonifera), with both parts of the root and shoot, were studied for the removal of the cationic metal ions, lead Pb2+ and chromium Cr6+, via batch mode experiments to evaluate their maximum adsorption capacity, and held a comparison between the used bio-sorbent roots and shoots, based on the highest bio-sorption potential. Optimization of the bio-sorption parameters, such as contact time, pH, bio-sorbent (root and shoot) dosage, and initial ion concentration was conducted. The results indicated that 1.6 g of the used bio-sorbent shoot material removed 81.4% of Pb2+, and 77% of Cr6+ metal ions from liquid media under the conditions of 100 ppm of initial metal ions concentration at room temperature for 60 min of contact time with the static condition. Different isotherms and kinetic models were fit to the experimental data to understand the nature of the bio-sorption process. The experimental data were best fit by the pseudo-second-order kinetic model with a high correlation coefficient (R2 = 0.999), which reveals the chemisorption nature of the bio-sorption process. The chemical and structural analysis of the used bio-sorbent, before and after Cr6+ and Pb2+ bio-sorption, were performed using different techniques of characterization, such as Scanning Electron Microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The used bio-sorbent proved to be a low-cost, efficient, and eco-friendly material to remove heavy metal ions from aqueous solutions.


Author(s):  
E. S. Isagba ◽  
S. Kadiri ◽  
I. R. Ilaboya

This paper investigated the use of yam peel as a natural adsorbent for the removal of Copper (Cu) and Manganese (Mn) from waste water. The yam peels were thoroughly washed with distilled water, dried, pulverized and carbonized. The carbonized yam peel was then characterized for its particle sizes, moisture content, ash content, volatile matter, Methylene Blue number, Iodine number. The raw yam peels were prepared using the same procedure, but was not carbonized. The adsorption of Mn(II) and Cu(II) ions were investigated using adsorption experiment at room temperature. The effect of contact time, metal ion concentration and dosage were evaluated. The residual concentrations of the metal ions were determined by Atomic Absorption Spectrophotometer (AAS). Experimental data obtained were analyzed using Kinetic models and Isotherms such as Pseudo- First order kinetic models, Pseudo-second order kinetic models, Langmuir isotherms and Freundlich isotherm. The analysis showed that the pseudo-second order kinetic model best described the adsorption of the metal ions; ( Cu; r2 = 0.991 for RYP and r2 = 0.834 for AYP) and (Mn; r2 = 0.958 for RYP and r2 = 0.896 for AYP) and the experimental data best fit the Freundlich model; (Cu; r2 = 0.564 for RYP and r2 = 0.871 for AYP) and (Mn; r2 = 0.685 for RYP and r2 = 0.736 for AYP). Finally, optimum removal efficiencies of 30.54% for Mn(II) and 39.62% for Cu(II) were obtained for AYP at concentrations of 50mg/l and mass dosage of 1.0g, 120 minutes contact time and a pH of 6.8.


2007 ◽  
Vol 4 (2) ◽  
pp. 238-254 ◽  
Author(s):  
R. Sudha ◽  
K. Kalpana ◽  
T. Rajachandrasekar ◽  
S. Arivoli

Batch experiments were carried out for the sorption of Copper and Ferrous ions onto acid activated carbon prepared. The operating variables studied were initial metal ion concentration, pH, and temperature and contact time. The equilibrium data were fitted to the Langmuir and Freundlich isotherm equations. From this adsorption efficiency, adsorption energy, adsorption capacity, intensity of adsorption and dimensionless separation factor were calculated. From the kinetic studies the rate constant values for the adsorption process was calculated. From the effect of temperature thermodynamic parameters like ΔG°, ΔH°, and ΔS° were calculated. The mechanism of adsorption for metal ions onto carbon was investigated by using the experimental results and confirmed by FT- IR, XRD and SEM images.


2015 ◽  
Vol 17 (3) ◽  
pp. 100-109 ◽  
Author(s):  
P. Senthil Kumar ◽  
H. Ethiraj ◽  
Anita Venkat ◽  
N. Deepika ◽  
S. Nivedha ◽  
...  

Abstract This paper reports the application of poly(azomethinethioamide) (PATA) resin having the pendent chlorobenzylidine ring for the removal of heavy metal ions such as Zn(II) and Ni(II) ions from the aqueous solutions by adsorption technology. Kinetic, equilibrium and thermodynamic models for Zn(II) and Ni(II) ions adsorption were applied by considering the effect of contact time, initial metal ion concentration and temperature data, respectively. The adsorption influencing parameters for the maximum removal of metal ions were optimized. Adsorption kinetic results followed the pseudo-second order kinetic model based on the correlation coefficient (R2) values and closed approach of experimental and calculated equilibrium adsorption capacity values. The removal mechanism of metal ions by PATA was explained with the Boyd kinetic model, Weber and Morris intraparticle diffusion model and Shrinking Core Model (SCM). Adsorption equilibrium results followed the Freundlich model based on the R2 values and error functions. The maximum monolayer adsorption capacity of PATA for Zn(II) and Ni(II) ions removal were found to be 105.4 mg/g and 97.3 mg/g, respectively. Thermodynamic study showed the adsorption process was feasible, spontaneous, and exothermic in nature.


2018 ◽  
Vol 78 (7) ◽  
pp. 1525-1534 ◽  
Author(s):  
Moein Safari ◽  
Salman Ahmady-Asbchin

Abstract In this present study, biosorption of Zn(II) from aqueous solution by cyanobacterium Fischerella ambigua was investigated in batch experiments. The effects of pH, bacterial dosage, initial Zn(II) concentration, contact time and temperature were studied. Removal process was influenced significantly by the variation of pH, biosorbent concentration, initial Zn(II) ion concentration, temperature and contact time. Optimum biosorption conditions were found to be initial pH of 5, bacterial dosage of 0.2 g/l and initial Zn(II) ion concentration of 175 mg/l at room temperature and contact time of 90 min. The maximum uptake capacity of F. ambigua for Zn(II) ions was found to be 98.03 mg/g at optimum conditions. The correlation coefficient for the second-order kinetic model was 0.995. The Freundlich isotherm model showed better fit to the equilibrium of the system, compared with the Langmuir model. Fourier transform infrared analysis of bacterial biomass revealed the presence of carboxyl, hydroxyl, sulfite and amino groups, which are likely responsible for the biosorption of Zn(II). The negative values of Gibbs free energy, ΔG°, confirm the spontaneous nature of the biosorption process. Finally, F. ambigua adsorption capacity was compared with other biosorbents. Results showed that F. ambigua was an efficient biosorbent in the removal of Zn(II) ions from an aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document