scholarly journals Spectrophotometric Screening of Potent Bactericidal Property of Thevetia Peruviana Schum. Leaf and Fruit Rind Extracts on Clinical and Plant Pathogens

2014 ◽  
Vol 2 (4) ◽  
pp. 451-459 ◽  
Author(s):  
Nazneen Rahman ◽  
Riaz Mahmood ◽  
Haseebur Rahman ◽  
Mir Haris

The development of multi drug resistance in human and plant pathogens, reconsidering the traditional medicines as antibacterial source and presence of promising phytochemicals in leaf and fruit rind of T. peruviana (S) (Nazneen et al., 2014) prompted the authors to take up the antibacterial evaluation of different extracts. Antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of various extracts of T. peruviana (S) were measured using methods of National Committee for Clinical Laboratory Standards (NCCLS).The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) spectrophotometric determination of active extracts has found that the MICs of all the active extracts lies between the range of 250 μg to 1250 μg and bactericidal concentration in a range of 500 to 1250 μg. The percentage of inhibition was analysed, where in among all the extracts tested against B. subtilis and E. coli, fruit upper liquid (FUL) exhibited highest inhibition percentage of 33.75% and 30.31 % at 500 μg/ml respectively. Similarly, fruit hexane (FH) extract has the highest inhibition of 15.60% against B. cereus at 750 μg/ml. The Xanthomonas sp. was susceptible to leaf chloroform (LC) with 32.29% of inhibition at 1000 μg/ ml. The activity index and total antimicrobial activity indicates the antibacterial action of extracts.The present investigations have revealed that among the extracts, the fruit rind extracts have most prominent inhibition abilities against tested bacteria, which are validating the use of this plant in traditional system of medicine and this is the first report of exploration of above extracts for their antibacterial activities against B. subtilis, B. cereus, E. coli and Xanthomonas sp. DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11206Int J Appl Sci Biotechnol, Vol. 2(4): 451-459 

Author(s):  
Ashish Srivastava ◽  
D. B. Mondal

The study was conducted to investigate the antibacterial efficacy against enteropathogenic E. coli of plants commonly used to treat calf-diarrhoea. Methanolic extracts of six plants (Aegle marmelos, Curcuma longa, Dalbergia sissoo, Mangifera indica, Psidium guajava and Punica granatum) were screened for their antibacterial property against enteropathogenic E. coli by standard disc diffusion method. Minimum inhibitory concentration (MIC) and of the extract exhibiting highest antibacterial activity was estimated by broth dilution method and minimum bactericidal concentration (MBC) was measured by streaking the contents of MIC tubes on nutrient agar plates. Among the six extracts tested, only extracts of Curcuma longa, Psidium guajava and Punica granatum exhibited antibacterial activity against E. coli. Out of these three, Punica granatum extract was found to be most effective with a mean inhibition zone of 14.67±0.577 mm followed by Psidium guajava (9.67±0.577 mm) and Curcuma longa (8.67±0.577 mm), produced by the disc containing 8.00 mg of respective extract. Minimum inhibitory concentration and minimum bactericidal concentration of the Punica granatum extract were estimated to be 02.00 mg/mL and 03.00 mg/mL respectively. These findings suggest that methanolic extracts of Curcuma longa, Psidium guajava and Punica granatum possess antibacterial activity against enteropathogenic E.coli


DICP ◽  
1989 ◽  
Vol 23 (6) ◽  
pp. 456-460
Author(s):  
Michael N. Dudley ◽  
Hilary D. Mandler ◽  
Kenneth H. Mayer ◽  
Stephen H. Zinner

Serum inhibitory and bactericidal titers were measured in nine healthy volunteers following single iv doses of ciprofloxacin 100, 150, and 200 mg. The median peak serum bactericidal titer (5 minutes following completion of a 30-minute infusion) against two highly susceptible strains of Escherichia coli ranged between 1:64 and 1:1024 and titers exceeded 1:8 for six hours for all dose levels. The bactericidal titers against two strains of Pseudomonas aeruginosa and a methicillin-resistant strain of Staphylococcus aureus were considerably lower, the median peak being 1:2 at all dose levels. Measured inhibitory and bactericidal titers at five minutes and one hour postinfusion were significantly greater than those predicted (measured serum ciprofloxacin concentration to minimum inhibitory concentration [MIC] or minimum bactericidal concentration [MBC]) for only one strain of E. coli. Intravenous doses of ciprofloxacin 100–200 mg produce high and sustained serum bactericidal titers against highly susceptible bacteria; considerably lower levels of activity are seen against bacteria having higher MICs and MBCs but still considered susceptible to the drug.


2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


2021 ◽  
Author(s):  
li li jiang ◽  
Su Xu ◽  
Haitao Yu ◽  
Qi Cui ◽  
Rui Cao

Abstract In this study, graphene oxide (GO) was first prepared by the modified Hummer method. Then, the GO/trichloroisocyanuric acid (TCCA) composite was prepared by loading TCCA into GO with the blending method. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy were used to characterize the composite. The results showed that TCCA was successfully loaded on the surface of GO or intercalated among GO layers. Next, the antibacterial performance of the composite against Escherichia coli and Staphylococcus aureus was tested by the 96-well plate assay. A bactericidal kinetic curve, bacterial inhibition tests, and the mechanism of bacterial inhibition is discussed. The results showed that the minimum inhibitory concentration of the GO/TCCA composite (GO:TCCA ratio = 1:50) was 327.5 µg/mL against E. coli and 655 µg/mL against S. aureus. At the minimum inhibitory concentration, the inhibition rate of the GO/TCCA composite exceeded 99.46% against E. coli and 99.17% against S. aureus. The bactericidal kinetic curves indicate that the GO/TCCA composite has an excellent bactericidal effect against E. coli and S. aureus.


Author(s):  
Khodijah Khodijah ◽  
Ratna Farida ◽  
Nurtami Soedarsono

Objective: This experiment aimed to analyze the effect of propolis extract and propolis containing candies on the growth of Aggregatibacter actinomycetemcomitans using spectrophotometric analysis and colony-forming units (CFU) counts.Methods: After A. actinomycetemcomitans were exposed to propolis extract and candies, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined with spectrophotometry and post-exposure colony counting.Results: The MIC of propolis extract against A. actinomycetemcomitans was determined to be 10%, and the MBC was 20%. A decrease in the total CFU count of A. actinomycetemcomitans was observed after propolis extract and candy exposure.Conclusions: Propolis extract and propolis candies were effective in inhibiting the growth of A. actinomycetemcomitans ATCC 43718 in vitro.


1970 ◽  
Vol 6 (1) ◽  
pp. 13-18 ◽  
Author(s):  
MA Zinnah ◽  
MH Haque ◽  
MT Islam ◽  
MT Hossain ◽  
MR Bari ◽  
...  

A total of 100 different E. coli isolates collected from 10 different biological and environmental sources (10 isolates from each source) such as human faces, human urine, cattle, sheep, goat, chicken, duck, pigeon, drain sewage and soil were used for in-vitro drug sensitivity test in the Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh during the period from January to May 2007. Ten different drugs such as Gentamicin (GM), Azithromycin (AZM), Erythromycin (E), Levofloxacin (LVX), Ciprofloxacin (CIP), Tetracycline (TE), Amoxicillin (A), Ampicillin (AP), Nalidixic acid (NA) and Metronidazole (MET) were used in this study. Sensitivity test was carried out by the Kirby-Bauer disc diffusion method as per recommendation of National Committee for Clinical Laboratory Standards and efficacy of a drug was determined by measuring the diameter of the zone of inhibition that results from diffusion of the agent in to the medium surrounding the disc. A high of 80% and 78% E. coli isolates collectively from all the selected sources were sensitive to LVX and CIP respectively, followed by GM (46%), AZM (45%), TE (30%), AP (29%), E (19%), NA (18%) and A (15%). No isolate was sensitive to MET (0%). Incase of resistance, 96% isolates were resistant to MET, followed by A (72%), E (69%), NA (67%), TE (60%), AP (59%), AZM (33%) and GM (32%), CIP (8%) and LVX (5%). A number of isolates showed intermediate reaction to GM (22%), AZM (22%), LVX (15%), NA (15%), CIP (14%), A(13%), AP (12%), E (12%), TE (10%) and MET (4%). This may be an intermediate phase for the conversion of E. coli isolates from sensitive to resistant form. From the research it may be concluded that E. coli infection of different animals and birds and also of human being may be treated effectively with LVX and CIP followed by GM and AZM. Key words: E. coli isolates, levofloxacin, ciprofloxacin, efficacy, resistance DOI = 10.3329/bjvm.v6i1.1332 Bangl. J. Vet. Med. (2008). 6 (1): 13-18


Sign in / Sign up

Export Citation Format

Share Document