scholarly journals Flour Mill Workers Occupational Noise Exposure in Chandrapur City, Central India

2018 ◽  
Vol 7 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Namrata R. Nimgade ◽  
R. K. Kamble

Assessment of occupational noise exposure of flour mill workers in Chandrapur city of central India was carried out during November 2015-January 2016. Total 62 flour mills were selected for this study comprising one, two and three grinding machines operating in the shop floor. The sound level meter was used to measure sound level at 50 cm and 3 meters from grinding machines at receiver’s position during operation. Noise monitoring was also recorded when one, two and three machines were operating individually and simultaneously. The results showed that noise levels when one grinding machine in operation in close proximity (50 cm) was in the range of 80-97 dB(A). Comparison of these observations with that of 3 meters distance; it was observed that noise levels got reduced and in the range of 70-77 dB(A). In the case of two machines in operation, it was in the range of 95-118 dB(A) at 50 cm distance and reduced to 75-95 dB(A) at 3 meters distance. This reduction in noise level was due to the propagation of noise in the ambient environment. Furthermore, daily noise exposure points, exposure points job per task and exposure points per hour were computed by using noise exposure calculator developed by Health and Safety Executive (HSE), United Kingdom. The computation from this calculator revealed that these attributes were directly depended upon noise levels in flour mills and duration of noise exposure. A positive linear Pearson’s correlation (p<0.01) was observed between noise level and exposure points per hour. Of the 65 flour mill workers surveyed, 70.76% reported a hearing problem, 23.07% headache at work and out of which 7.69% workers headache remains after completion of work also. Remedial measures to control noise exposure to flour mill workers such as ear plugs, ear muff, semi-insert are recommended.

Author(s):  
Rahul K. Kamble

Noise level monitoring was carried out at nine important traffic intersections of the Chandrapur city to ascertain noise levels and daily noise exposure. A pre-calibrated mini sound level meter was used for noise measurement. Observations were recorded for 24 hours and noise level during the day, night and for 24-hours was computed. Maximum noise level during daytime was 84.27 dB(A) at Bangali camp square; whereas, minimum 79.23 dB(A) at Priyadarshani square. In case of nighttime maximum 85.90 dB(A) was at Warora naka square and minimum 70.06 dB(A) at the Jatpura gate. Minimum noise level during 24-hours was at Bagla square 84.34 dB(A) and maximum 91.14 dB(A) at Warora naka square. Noise level during day and night were above the Indian noise standard for the commercial area. The Bangali camp square was identified as the most ear-splitting square during daytime and Warora naka square at nighttime and for 24-hours also. Peak noise was recorded from 10.00 am to 11.00 am and 3.00 pm to 7.00 pm. Vehicular noise, horns, and improper road design contributed significantly to noise levels at traffic intersections. Daily noise exposure analysis by Health and Safety Executive, UK software revealed Bangali camp square and Ramnagar police station square’s daily noise exposure for 0.25 hour was maximum 70 LEP,d and minimum at Gandhi square and Bagla square 65 LEP,d. Noise levels indicated no immediate effect for hearing loss. Control measures for reduction of noise levels at traffic intersections have also been proposed.


Author(s):  
EV Shornikova ◽  
LV Prokopenko ◽  
KS Kolikov ◽  
OI Yushkova ◽  
VN Mikhailova

Introduction: To solve the tasks of preventing occupational diseases in workers of the mining industry, it is important to substantiate physiological indicators of tension of the regulatory systems of the human body under the negative impact of industrial noise and neuro-emotional work intensity and to assess the effectiveness of hearing personal protective equipment (PPE). Our objective was to identify physiological characteristics of adverse functional changes in workers of various professions in the mining industry exposed to the combined effect of occupational noise and work intensity to substantiate the use of hearing protection devices. Materials and methods: We studied indicators of concentration of attention, short-term memory, speed of perception of visual and auditory signals, and the index of functional changes in the circulatory system reflecting negative effects of occupational noise exposure combined with work intensity on the central nervous and cardiovascular systems. We assessed occupational noise exposure by the equivalent sound level on the A-scale of a sound level meter per shift, work intensity, and conducted physiological studies of mining industry employees. Results: In miners, we established a 5.6-fold decrease in concentration of attention from the initial level and a 5.9-fold increase in the index of functional changes in the circulatory system compared with operators of robotic complexes, in which all indicators varied within the physiological norm. The maximum change in the parameters indicates the work tension that was the most pronounced in miners. The same extent of workplace stress was observed in operators of mineral processing plants and engineering and technical staff exposed to similar noise levels (60-70 dB, sometimes exceeding 90 dBA), while the lowest one was observed in the operators of robotic complexes, thus indicating maintenance of a sufficient level of working capacity during the work shift. The estimated miners’ index of functional changes in the circulatory system (2.69±0.08 points) demonstrated the state of functional stress. The individual analysis indicated a significant percentage of people with reduced unsatisfactory adaptation and the state of its failure (3.0±0.05 points) in this very professional group. According to the results of establishing a causal relationship between the increase in the functional tension by indicators of the central nervous system and cardiovascular system and occupational noise levels, emotional stress and adverse shift mode, the workplace stress was justified as a marker of the combined effect of noise and intensity of the work process. Conclusions: A high level of workplace stress accompanied by intensive occupational noise and work intensity factors is an indicator of a decreasing working capacity and development of a prognostically unfavorable functional state of the human body.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A5.3-A6
Author(s):  
Zara Ann Stokholm ◽  
Inge Brosbøl Iversen ◽  
Henrik Kolstad

Current legislation and threshold limits for occupational noise exposure may not sufficiently account for higher vulnerability of the foetus. We conducted a systematic literature review and identified 20 relevant studies of prenatal noise exposure levels and health. Maternal tissues attenuate industrial noise by about 30 dB. The foetus responds the earliest to noise exposure from the 19th week of gestational age. There is some evidence of an increased risk of hearing loss at prenatal noise levels≥85 dBA (8 hour average) and little evidence at lower levels. Increased risks for preterm birth, small-for-gestational-age and congenital malformations are seen as single study findings at levels≥90 dBA. There is little evidence for how noise exposure may increase the risk of extra-auditive effects in the foetus. Methodological shortcomings and the scarce number of studies limit the conclusions that can be drawn. Still, we recommend pregnant women avoid working at noise levels≥85 dBA.


2021 ◽  
pp. 2571-2579
Author(s):  
Ahmed H. Ali ◽  
Mohammed M. Abed ◽  
Berivan H. Mahdi ◽  
Wassan D. Hussain ◽  
Aisar M. Mohaisen

     The aim of this study was to evaluate the effects of noise exposure in certain residential districts in Fallujah city. Twenty-nine stations were selected and divided into two groups; the first group was located 50 to 100 metres from the main streets (quiet areas), whilst the second was located directly on the main streets. Noise levels were measured at a rate of three readings per station for different time periods for approximately sixty days in the year 2020. Mean values were taken in both the morning and evening using a portable sound level meter (Auto range, RS-232). The highest noise level was measured at Alforkan station for the morning reading (83.8 dB) within the second group, while the lowest noise level was measured at Alshohada alawla district station for the morning reading (63.2 dB) within the first group. As for the results of the daily noise level in the evening, the highest daily average (79.4 dB) was measured at Jaish al Shabi street, while the lowest daily average (56.4 dB) was at Dor Alsekak district. The total average noise levels for the morning measurements for the first and second groups were 66.7 dB and 77.2 dB, respectively, whereas those for evening measurements were 65.3 dB and 71.7 dB, respectively. According to field measurements, the average values for the noise (traffic) for the first and second groups in the morning and afternoon exceeded 68 dB, which may cause people to feel very disturbed according to the WHO guidelines on exposure to external environmental noise. In general, all the results measured in this study are above the limits allowed both locally and internationally. This is due to certain erroneous practices in daily activities in addition to the irregular spread of electric generators and commercial activities as well as heavy traffic in the city.


Author(s):  
Aritrik Das ◽  

Introduction: In India, an area of not less than 100 metres around a hospital is considered a silence zone, with guidelines restricting noise levels at 50dBA during daytime and 40dBA during the night. Annoyance is a known effect of noise exposure. Objectives: To determine the feasibility of an extensive study on noise in the hospital, annoyance in staff due to hospital noise and its associated factors. Methods: Noise data was collected from 3 sites, using a Digital Integrating Sound Level Meter, LutronSL-4035SD(ISO-9001,CE,IEC1010) meeting IEC61672 standards. Stratified random sampling of staff was done on basis of noise exposure. A pre-designed, semi-structured questionnaire collected information on sociodemographic and work profile. Annoyance was measured using standardized general purpose noise reaction questionnaire (ISO-TS/ 15666). Data was analysed in SPSS. Result: Laeq ranged from 56dB in nephrology ward to 89.2dB at OPD atrium. Maximum noise level was 98.6dB in OPD atrium and 86.1dB in nephrology ward. Levels at night in ward were higher than during day time. 24 (53.3%) of the staff said their workplace is noisy, while 26(57.8%) were annoyed by workplace noise. Annoyance due to hospital noise was associated with age (p=0.003), duration of work in hospital per week (p=0.04), duration of work in current department (p=0.007), noise level (p=0.04) and workplace distance from arterial road (p=0.02). Conclusion: Hospital noise levels are higher than recommended levels for sensitive zones as per national guidelines and exceed levels inside wards as stipulated by WHO. More than half the study population were annoyed by workplace noise indicating need for interventions. A study throughout the hospital to study noise levels and annoyance among staff following similar methodology is feasible and necessary.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248939
Author(s):  
Pervez Alam ◽  
Kafeel Ahmad ◽  
Afzal Husain Khan ◽  
Nadeem A. Khan ◽  
Mohammad Hadi Dehghani

Noise monitoring and mapping is the critical processes to ensure that the noise level does not reach the harmful levels and provides noise exposure level details. 2-D and 3-D noise mapping has been carried out at pre-selected critical locations of major roads passing through densely populated residential areas, namely, Mathura Road, Lodhi Road, Lala Lajpat Rai Road, and Ring road, along with significant intersections, viz. Moolchand, Ashram, Sabz Burj, and Lodhi road. The monitoring has been performed during the day and night’s peak traffic hours using Sound Level Meter (SLM) Larson & Davis 831as per standard procedure. Then after, 2-D and 3-D noise maps have been prepared, visualized, and analyzed by soundPLAN (acoustic) and MapInfo Pro (Desktop GIS). The maximum noise level is observed at Ashram Chowk [81.1 dB (A)] at 8 pm; however, the minimum noise level is found to be at Lala Lajpat Rai Road [76.4dB (A)] at 7 pm. Monitoring results of noise level show non-compliance of regulatory standards for day time and night time. 2-D noise maps revealed that the noise level is maximum at the centerline of the road and decreases either side with the distance, and remains above the permissible limits at all locations. However, the 3-D noise maps show horizontal as well as vertical noise levels at all locations. The 3-D noise maps also revealed a noise level of 70 dB (A) up to a height of 6.096m at the Ashram Chowk and Moolchand intersection. However, a noise level of 65 dB (A) has been observed at the height of 5.486m at Lala Lajpat Rai Marg and Sabz Burj. This study will explore noise levels in both horizontal and vertical directions near roads surrounded by high-rise buildings. It will help the decision-makers take remedial measures.


2020 ◽  
Vol 189 (11) ◽  
pp. 1342-1347
Author(s):  
Lisa Aarhus ◽  
Kristina Kjærheim ◽  
Sanna Heikkinen ◽  
Jan Ivar Martinsen ◽  
Eero Pukkala ◽  
...  

Abstract It has been suggested that the association between self-reported occupational noise exposure and vestibular schwannoma (VS), found in several studies, represents recall bias. Therefore, we aimed to study the relationship in a large case-control study using occupational noise measurements. We performed a case-control study using data from Sweden for 1,913 VS cases diagnosed in 1961–2009 and 9,566 age- and sex-matched population controls. We defined occupational history by linkage to national censuses from 1960, 1970, 1980, and 1990. We estimated occupational noise exposure for each case and control using a job-exposure matrix. There was no association between occupational noise exposure and VS. Among subjects assessed as ever exposed to occupational noise levels of ≥85 dB (214 cases and 1,142 controls), the odds ratio for VS per 5 years of exposure was 1.02 (95% confidence interval: 0.90, 1.17). Workers with noise levels of ≥85 dB for at least 15 years (5-year latency period), showed no increased risk of VS (odds ratio = 0.98, 95% confidence interval: 0.73, 1.31) compared with those who had never been exposed to noise levels of 75 dB or higher. In summary, our large study does not support an association between occupational noise exposure and VS.


Noise is an environmental stressor, which leads to various ailments due to the physiological and psychological stresses it creates. It is essential to understand and evaluate the contributing factors of environmental noise, especially in densely polluted areas near major roads, railways and airports, for public health policy and planning. Noise level measurement permits precise and scientific analysis of noise annoyance, and therefore, this study aimed to determine the average noise levels of Quetta city. Seventy-three (73) location’s equivalent noise levels (Leq) were measured at peak rush hours for three consecutive days. Selected areas for measurement included health care centres, educational centres, government offices, public places, residential and commercial areas. All the selected sites were located near to main roads, where the traffic noise was the most prominent noise source. Noise was measured through calibrated microprocessor sound level meter. The results were computed by taking the mean of the three readings. The results showed 74 dBA as average noise level of Quetta city. It has been found that 90% of the selected locations in Quetta city exceeded the 65dBA, while 10 % of the total locations ranged between 55 to 65 dBA. The average noise exposure of the Quetta city was greater than the permissible international noise standard. This study identified the main traffic hubs of Quetta city, which requires mitigation strategies by the policy makers specifically for Health care and Educational sectors. It also requires adequate updated plans for community noise survey and ordinance.


2021 ◽  
Vol 15 (8) ◽  
pp. 2425-2429
Author(s):  
Mohamad Zulkhairil Mohd Zaki ◽  
Haliza Abdul Rahman ◽  
Azrin Shah Abu Bakar

There has been a great concern of occupational noise-included hearing loss (NIHL) among health care workers. Prior research revealed that ambulance drivers are at high risk of noise on hearing. The aim of this study is to assess the level of noise emitted from the ambulance siren and knowledge, attitude and practice (KAP) on occupational noise exposure. A cross-sectional study in Klang Valley, Malaysia was conducted from February 2019 to March 2019 among 82 ambulance drivers. Data was collect using a self-administered questionnaire consisting sociodemographic, 13 questions for knowledge, 13 questions on attitude and 13 on the practice toward occupational noise exposure. In addition, a Solo 01dB Sound Level Meter was used to measure the level of noise emitted from the siren of the ambulance. Data was analysis by using SPSS version 22. Average noise level (Laeq) was 88.9 db (A) which can be considered as high than permissible exposure limit specified in Factories and Machinery (Noise Exposure) Regulations 1989. The KAP on occupational noise exposure among respondents were moderate. In addition, there was a significant difference between knowledge and attitude on occupational noise (p=0.002, r=-0.339). Improved of KAP is recommended through conducting training and seminars on occupational noise frequently to ensure high level of KAP among ambulance drivers. Besides, engineering controls such as installing noise barrier were advised to be implemented and enforcement of law should be taken seriously to minimize and void hearing related problems in the near future.


2020 ◽  
Vol 64 (6) ◽  
pp. 604-613 ◽  
Author(s):  
Zara Ann Stokholm ◽  
Mogens Erlandsen ◽  
Vivi Schlünssen ◽  
Ioannis Basinas ◽  
Jens Peter Bonde ◽  
...  

Abstract Occupational noise exposure is a known risk factor for hearing loss and also adverse cardiovascular effects have been suggested. A job exposure matrix (JEM) would enable studies of noise and health on a large scale. The objective of this study was to create a quantitative JEM for occupational noise exposure assessment of the general working population. Between 2001–2003 and 2009–2010, we recruited workers from companies within the 10 industries with the highest reporting of noise-induced hearing loss according to the Danish Working Environment Authority and in addition workers of financial services and children day care to optimize the range in exposure levels. We obtained 1343 personal occupational noise dosimeter measurements among 1140 workers representing 100 different jobs according to the Danish version of the International Standard Classification of Occupations 1988 (DISCO 88). Four experts used 35 of these jobs as benchmarks and rated noise levels for the remaining 337 jobs within DISCO 88. To estimate noise levels for all 372 jobs, we included expert ratings together with sex, age, occupational class, and calendar year as fixed effects, while job and worker were included as random effects in a linear mixed regression model. The fixed effects explained 40% of the total variance: 72% of the between-jobs variance, −6% of the between-workers variance and 4% of the within-worker variance. Modelled noise levels showed a monotonic increase with increasing expert score and a 20 dB difference between the highest and lowest exposed jobs. Based on the JEM estimates, metal wheel-grinders were among the highest and finance and sales professionals among the lowest exposed. This JEM of occupational noise exposure can be used to prioritize preventive efforts of occupational noise exposure and to provide quantitative estimates of contemporary exposure levels in epidemiological studies of health effects potentially associated with noise exposure.


Sign in / Sign up

Export Citation Format

Share Document