scholarly journals In-Vitro Biofilm Detection among Uropathogens and their Antibiogram Profile

2018 ◽  
Vol 5 ◽  
pp. 57-62
Author(s):  
Bijayata Shrestha ◽  
Basudha Shrestha ◽  
Asia Poudel ◽  
Binod Lekhak ◽  
Milan Kumar Upreti

Objectives: The study was carried out in Kathmandu Model Hospital, Kathmandu with the aim of in- vitro biofilm detection among uropathogens and its correlation with antibiotic resistance. Methods: Uropathogens (n=234) were isolated, and identified with standard microbiological techniques and further subjected to Modified Congo Red Agar Method for the biofilm detection in-vitro; antimicrobial susceptibility testing (10 antibiotics) was performed by Modified Kirby Bauer disc diffusion method. The MIC and MBEC values of Levofloxacin were determined by agar dilution for planktonic forms and by microdilution method for biofilm phase respectively. Results: Among 234 urine isolates, 134(57%) were positive for in-vitro biofilm production and 88(37.6%) were multidrug resistant (MDR). E. coli was the predominant biofilm forming uropathogens. The incidence of biofilm producers was found to be independent of age-wise, gender wise and indoor-outdoor distribution of patients. The association between biofilm production and multidrug resistance among uropathogens was found statistically non-significant (p-value>0.05). The MBEC values of biofilm phase of growth were found to be greater than the MIC values for their planktonic counterparts. The MBEC values ranged from 4 to more than1024 μg/ml whereas the MIC values ranged from 0.003-16 μg/ml. Conclusion: The results of the present study suggest that biofilm detection is a critical step to fight against biofilm-involved infections. However, further studies are needed for the development of effective preventive and treatment strategies of biofilm associated UTIs to avoid recurrence and persistence.  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mohammed Dalli ◽  
Salah-eddine Azizi ◽  
Hind Benouda ◽  
Ali Azghar ◽  
Maroua Tahri ◽  
...  

Nigella sativa L. (NS) and its volatile compounds are well known for their broad spectrum of effects. This study aimed to investigate the variability of the chemical composition and the in vitro antibacterial activity of five essential oils (Eos) originated from Morocco, Saudi Arabia, Syria, India, and France. These five samples were grown under different edaphic and climatic conditions. The agar diffusion method and microdilution method in 96-well plates were used to test the sensitivity of multidrug-resistant strains clinically isolated from patients (methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii), for the determination of the minimum inhibitory concentration and bactericidal concentration. Among all the investigated Eos, the monoterpenes were highly present in the chemical composition. Moroccan, Saudi Arabian, and Syrian seeds were characterized by the presence α-phellandrene (20.03–30.54%), β-cymene (12.31–23.82 %), and 4−caranol (9.77–14.27%). The Indian seeds were rich with 4-caranol (18.81%), β-cymene (14.22%), α-phellandrene (10.58%), and β-chamigrene (9.54%), while France NS was rich with estragole (20.22%) and D-limonene (14.63%). The minimum inhibitory (MIC) and bactericidal concentration (MBC) obtained for the four Eos (with the exception of France because of the low yield) tested were ranging from 3 to 40 μl/ml. Gram-positive (+) bacteria were slightly sensitive to the Eos tested than the Gram-negative (−) bacteria. The results of this study showed that the Eos of NS seeds show interesting antibacterial activity which could be associated to the existence of different bioactive compounds. Indeed, these compounds can be used for preventive or curative purposes in the face of the noncontrolled emergence of resistance to antibiotics.


2021 ◽  
Vol 21 (1) ◽  
pp. 281
Author(s):  
Muhammad Zaidan Tsani Ariandi ◽  
Meiskha Bahar ◽  
Hany Yusmaini ◽  
Fajriati Zulfa ◽  
Cut Fauziah ◽  
...  

Actinomycetes are found in soils with loose, humus, dry characteristics and around plant roots. Actinomycetes produce secondary metabolite compounds as antibacterial. Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi are Gram negative bacteria that can cause infection in humans. This study aims to determine the ability of the Actinomycetes metabolite filtrate from Bogor Botanical Gardens as an antibacterial agent against the growth of E. coli, P.aeruginosa and S. typhi in vitro. This study used an experimental design with samples of Actinomycetes isolats originating from the Bogor Botanical Gardens soil using the disc diffusion method on Muller Hinton Agar (MHA) media by looking at the clear zone of bacterial growth around the disc paper. Of the three concentration groups, namely 50%, 60%, and 70%, the largest average inhibition zone is found at a concentration of 70% with the average for the three test bacteria E. coli, P.aeruginosa and S. typhi respectively: 4.23 mm; 3.0 mm and 8.43 mm. The results of the Kruskal - Wallis test with p value = 0.01 showed that there was an effect of the Actinomycetes metabolite filtrate on the growth of the three tested bacteria as antibacterials.  


2020 ◽  
Vol 14 (4) ◽  
pp. 2577-2584
Author(s):  
Tariq Ahmad Shah ◽  
P. Preethishree ◽  
Ashwini ◽  
Vidya Pai

Urinary tract infection (UTI) is one of the most common complaints in the outpatient clinic and a major health problem owing to the emergence of antibiotic resistance and biofilm formation. The objective of this study was to isolate and identify the causative bacterial agent of UTI and detect in vitro biofilm formation by Escherichia coli and investigate its correlation with antibiotic resistance. Urine samples from 519 patients with suspected UTIs were collected and processed by conventional microbiological procedures. Antimicrobial susceptibility testing for E. coli isolates was performed on Mueller Hinton agar (MHA) plates using the Kirby-Bauer disk diffusion method. Biofilm production was evaluated using the tissue culture plate method. Of 519 urine samples, 115 (22.1%) showed significant bacteriuria. The most common isolate was E. coli (n=57, 49.6%), followed by Klebsiella spp. (n=23, 20%). All E. coli isolates were evaluated for their ability to form biofilms in vitro. Of 57 isolates, 50 (87.7%) were biofilm producers and 7 (12.3%) were non-biofilm producers. Antibiogram of E. coli isolates revealed the highest resistance to ampicillin (96.5%) and nitrofurantoin (91.2%), followed by amoxyclav (82.5%), ceftazidime (73.7%), cefepime (71.9%), and tetracycline (71.9%). A significant association (p<0.05) was observed between biofilm formation and resistance to amoxyclav, ceftazidime, cefepime, imipenem, and nitrofurantoin. A significant correlation was noted between biofilm production and antibiotic resistance. Hence, screening of all isolates of uropathogenic E. coli for biofilm production and studying their antibiogram would allow appropriate choice of antibiotic therapy.


2021 ◽  
Vol 10 (7) ◽  
pp. 414-418
Author(s):  
Greeshma Hareendranath

BACKGROUND Escherichia coli is one of the most important causes of urinary tract infections (UTIs). Increased antibiotic resistance may limit the therapeutic options for the treatment of these infections. Fosfomycin trometamol is a phosphonic acid derivative, which acts primarily by interfering with bacterial peptidoglycan synthesis with broad spectrum of activity against agents causing urinary tract infection with good antibiofilm activity and limited reports of resistance and hence is increasingly called upon for the treatment of multi drug resistant (MDR) organisms causing UTI. There are limited studies from India regarding the efficacy of this drug; so, the study was conducted to determine the in vitro efficacy of fosfomycin against uropathogenic MDR E. coli. METHODS This was a prospective study done in the Department of Microbiology, Government T.D. Medical College, Alappuzha, over a period of 1 year from April 2018 to March 2019. A total of 150 MDR urine samples were processed by routine microbiological methods and after identification of E. coli urinary isolates, antibiotic susceptibility testing was performed and results were interpreted following the Clinical and Laboratory Standards Institute guidelines (CLSI). Fosfomycin sensitivity was tested by the Kirby-Bauer disc diffusion method. RESULTS Among the 150 MDR urinary E. coli isolates, 148 (98 %) were sensitive to fosfomycin in our study. The susceptibility rate of fosfomycin was clearly higher than other commonly used drugs for UTI. All extended-spectrum beta-lactamases (ESBL) producing E. coli were sensitive to this drug. The susceptibility for nitrofurantoin was fair, whereas for ampicillin, norfloxacin, cefotaxime and trimethoprim / sulphamethoxazole was found poor. Relatively better rates of resistance were observed for parenteral antibiotics. CONCLUSIONS With an enormous increase in the bacterial pathogens resistant to first-line antibiotics, there has been a revival in the use of fosfomycin. The convenience of a single dose regimen, a good activity proven invitro, and minimal propensity for development of resistance pathogens makes fosfomycin an attractive regimen for the treatment of uncomplicated community and hospital acquired UTIs. In this regard, with the existing limited options for treating MDR organisms, fosfomycin finds its utility acting as an effective and promising option in the treatment of UTIs due to MDR pathogens in the future.


Author(s):  
Roshni Agarwal ◽  
Vaibhav Agarwal ◽  
Anjali Tewari ◽  
Parwati Upadhyay

Background: Every time an antibiotic is used, whether appropriately or not, the probability of the development and spread of antibiotic resistant bacteria is increased. Thus, multidrug resistant bacteria particularly ESBL (Extended spectrum β­lactamase), Amp C and carbapenemases producing gram negative bacilli have emerged as a major health problem all over the world. Considering new treatment options as a carbapenems sparing and resistance prevention modality, this study was aimed to know the in vitro susceptibility pattern of Cefepime/Tazobactam (CPM/TZ) in comparison to other β-Lactam/ β-Lactamase inhibitors (BL/BLI) and carbapenems against GNB.Methods: A prospective study was conducted on all clinical samples received for a period of about 1 year. Identification and susceptibility of all isolates was done by Vitek 2 Compact system. Susceptibility of CPM/ TZ was done by disc diffusion method on the basis of CLSI guidelines. Both fermenters (E. coli and Klebsiella pneumoniae) and non-fermenters (Acintobacter baumanii and Pseudomonas aeruginosa) were included in the study.Results: Out of 550 GNB isolates the most common was E. coli (61.8%), Acintobacter baumanii (16%), Klebsiella pneumoniae (14.9%) and Pseudomonas aeruginosa (7.3%). Cefepime/tazobactam had a much higher susceptibility of 68% compared to cefepime (28%). Among the BL/BLI combinations tested cefepime/tazobactam (68%) showed the maximum percentage of susceptibility followed by cefoperazone/sulbactam (61.5%) and piperacillin/tazobactam (57.6%). Amongst all GNB isolates cefepime/tazobactam (68%) sensitivity was very much comparable to imipenem (71.8%) and meropenem (69.6%).Conclusions: CPM/TZ exhibited the best in vitro activity in comparison to the other BL/BLI. This new combination of cefepime/tazobactam appears to be a promising alternative therapeutic option to carbapenems. Clinical studies are needed to confirm this in vitro study result.


2020 ◽  
Vol 20 (25) ◽  
pp. 2300-2307
Author(s):  
Felipe Lemos Esteves do Amaral ◽  
Ticiane Costa Farias ◽  
Raquel Carlos de Brito ◽  
Thamara Rodrigues de Melo ◽  
Paula Benvindo Ferreira ◽  
...  

Background: The increasing and inappropriate use of antibiotics has increased the number of multidrug-resistant microorganisms to these drugs, causing the emergence of infections that are difficult to control and manage by health professionals. As an alternative to combat these pathogens, some monoterpenes have harmful effects on the bacterial cell membrane, showing themselves as an alternative in combating microorganisms. Therefore, the positive enantiomer α -pinene becomes an alternative to fight bacteria, since it was able to inhibit the growth of the species Escherichia coli ATCC 25922, demonstrating the possibility of its use as an isolated antimicrobial or associated with other drugs. Aims: The aim of this study is to evaluate the sensitivity profile of E. coli ATCC 25922 strain against clinical antimicrobials associated with (+) -α-pinene and how it behaves after successive exposures to subinhibitory concentrations of the phytochemicals. Methods: : The minimum inhibitory concentration (MIC) was determined using the microdilution method. The study of the modulating effect of (+) -α-pinene on the activity of antibiotics for clinical use in strains of E. coli and the analysis of the strain's adaptation to the monoterpene were tested using the adapted disk-diffusion method. Results: The results demonstrate that the association of monoterpene with the antimicrobials ceftazidime, amoxicillin, cefepime, cefoxitin and amikacin is positive since it leads to the potentiation of the antibiotic effect of these compounds. It was observed that the monoterpene was able to induce crossresistance only for antimicrobials: cefuroxime, ceftazidime, cefepime and chloramphenicol. Conclusion: It is necessary to obtain more concrete data for the safe use of these combinations, paying attention to the existence of some type of existing toxicity reaction related to the herbal medicine and to understand the resistance mechanisms acquired by the microorganism.


2018 ◽  
Vol 55 (4) ◽  
pp. 390-396 ◽  
Author(s):  
Roger Lafontaine Mesquita TABORDA ◽  
Luiz Antônio da SILVA ◽  
Patricia Puccinelli ORLANDI ◽  
Flávia Serrano BATISTA ◽  
Renata Santos RODRIGUES ◽  
...  

ABSTRACT BACKGROUND: Enteroaggregative Escherichia coli (EAEC) is one of the main acute and chronic diarrhea causes both in children and adults, mainly in developing countries. OBJECTIVE: The aim of the present study is to characterize EAEC strains isolated from faecal samples and to identify genes potentially contributing to virulence, biofilm production and antimicrobial resistance in children admitted to a pediatric hospital in Porto Velho, Rondônia State. METHODS: The total of 1,625 E. coli specimens were isolated from 591 children in the age group 6 years or younger who were hospitalized in Cosme and Damião Children Hospital in Porto Velho, between February 2010 and February 2012, with acute gastroenteritis. Colonies suggestive of E. coli were subjected to polymerase chain reaction testing in order to identify the virulence factors. The in vitro adhesion assays using HEp-2 adherence were tests. Biofilm detection through spectrophotometry and antimicrobial susceptibility tests were conducted in the disk diffusion method. RESULTS: The mentioned study examined 591 stool samples from children with diarrhea. Diarrheogenic E. coli was found in 27.4% (162/591) of the children. EAEC was the diarreagenic E. coli most frequently associated with diarrhea 52.4% (85/162), which was followed by enteropathogenic E. coli 43.8% (71/162), enterotoxigenic E. coli 2.4% (4/162), and enterohemorrhagic E. coli 1.2% (2/162). The aggR gene was detected in 63.5% (54/85) of EAEC isolates; moreover, statistically significant correlation was observed among typical EAEC (aggR) and aatA (P<0.0001), irp2 (P=0.0357) and shf (P=0.0328). It was recorded that 69% (59/85) of the 85 analyzed EAEC strains were biofilm producers; 73% (43/59) of the biofilm producers carried the aggR gene versus 42.3% (11/26) of non-producers (P=0.0135). In addition, there was association between the aatA gene and biofilm production; 61% (36/59) of the samples presented producer strains, versus 19.2% (5/26) of non-producers (P<0.0004). Antibiotic sensitivity test evidenced that most EAEC were ampicillin 70.6% (60/85), sulfamethoxazole 60% (51/85), tetracycline 44.7% (38/85) and cefotaxime 22.4% (19/85) resistant. CONCLUSION: As far as it is known, the present study is pioneer in Northern Brazil to investigate EAEC virulence factors and to show the antimicrobial susceptibility of EAEC strains isolated from children with diarrhea.


2018 ◽  
Vol 16 (2) ◽  
pp. 96-99
Author(s):  
Ihsan S. Rabeea ◽  
Ali M.H. Janabi

Background: Despite recent advances in burns management and antimicrobial chemotherapy, infection continues to be a tricky in the burns. Treatment of a burn infection especially in case of multi-drug resistant Pseudomonas aeruginosa is a big challenge in clinics and needs novel strategies. Miscarriage of the current treatment strategies to control several cases of burns infections, the systemic and local toxicity that are produced by many topical antibiotics (especially in children), and the delay of healing caused by several antiseptics, make a strong motive to find effective and safe products. Aim: This study aimed to investigate the in vitro activity of different concentration of date vinegar against P. aeruginosa in comparison to the ciprofloxacin, one of the antibiotics used in the treatment of burns infection by using disk diffusion method and agar dilution MICs assay. Results and Conclusion: The disk diffusion method revealed that mean inhibition zone of date vinegar at 100%, 50%, 20%, 10% and 5% were (50.9 ±0.27) mm, (30.5 ±0.24) mm, (25.9 ±0.29) mm, (18.3±0.22) mm, and (9.2±0.25) mm respectively while ciprofloxacin has mean inhibition zone (8.95 ±2.25) mm and MICs (1.25%). So the conclusion was that date vinegar exerted a good in vitro antimicrobial activity against all tested isolates.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1431
Author(s):  
Annamária Kincses ◽  
Bálint Rácz ◽  
Zain Baaity ◽  
Orsolya Vásárhelyi ◽  
Erzsébet Kristóf ◽  
...  

Urinary tract infections (UTIs) are common bacterial infections caused mainly by enteric bacteria. Numerous virulence factors assist bacteria in the colonization of the bladder. Bacterial efflux pumps also contribute to bacterial communication and to biofilm formation. In this study, the phenotypic and genetic antibiotic resistance of clinical UTI pathogens such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were determined by disk diffusion method and polymerase chain reaction (PCR). Following this, different classes of antibiotics were evaluated for their antibacterial activity at pH 5, 6, 7 and 8 by a microdilution method. Gentamicin (GEN) was the most potent antibacterial agent against E. coli strains. The effect of GEN on the relative expression of marR and sdiA genes was evaluated by quantitative PCR. The slightly acidic pH (pH 6) and GEN treatment induced the upregulation of marR antibiotic resistance and sdiA QS activator genes in both E. coli strains. Consequently, bacteria had become more susceptible to GEN. It can be concluded that antibiotic activity is pH dependent and so the artificial manipulation of urinary pH can contribute to a more effective therapy of multidrug resistant bacterial infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Sign in / Sign up

Export Citation Format

Share Document