Bevel Etching: A Low Cost Alternative to FIB

Author(s):  
B. Seidl ◽  
J. Walter ◽  
M. Kirchberger

Abstract Microstructural diagnostic for electronic packaging development and failure analysis under industrial manufacturing conditions require fast but reliable preparation routines. The aim of the presented poster is to introduce a time and cost efficient preparation technique for FESEM (field emission scanning electron microscope) investigations with focus on typical issues in electronic packaging development and failure analysis. The new ion beam based technique acts as a low cost alternative to FIB, able to prepare much wider section areas, combined in a tool, which can also be used for standard ion beam polishing processes.

Author(s):  
W. Mack ◽  
B. Seidl ◽  
R. Fischer ◽  
T. Ort ◽  
J. Walter ◽  
...  

Abstract Microstructural diagnostics for electronic packaging development and failure analysis under industrial manufacturing conditions require fast but reliable preparation routines which result in samples of high quality without preparation artefacts. The aim of the presented paper is to introduce a time- and cost efficient ion beam-based preparation procedure for high resolution Field Emission- Scanning Electron Microscopy (FESEM) analysis for packaging components. In particular, the considerable advantages of the proposed method compared to standard metallographic approaches will be demonstrated by discussing results of typical failure analysis examples as a function of the preparation procedure.


Author(s):  
Julien Goxe ◽  
Béatrice Vanhuffel ◽  
Marie Castignolles ◽  
Thomas Zirilli

Abstract Passive Voltage Contrast (PVC) in a Scanning Electron Microscope (SEM) or a Focused Ion Beam (FIB) is a key Failure Analysis (FA) technique to highlight a leaky gate. The introduction of Silicon On Insulator (SOI) substrate in our recent automotive analog mixed-signal technology highlighted a new challenge: the Bottom Oxide (BOX) layer, by isolating the Silicon Active Area from the bulk made PVC technique less effective in finding leaky MOSFET gates. A solution involving sample preparation performed with standard FA toolset is proposed to enhance PVC on SOI substrate.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


1975 ◽  
Vol 253 (7) ◽  
pp. 521-526 ◽  
Author(s):  
D. M. Koenhen ◽  
M. A. de Jongh ◽  
C. A. Smolders ◽  
N. Yücesoy

2021 ◽  
Vol 02 (01) ◽  
Author(s):  
Siti Khadijah Hubadillah ◽  
◽  
Norsiah Hami ◽  
Nurul Azita Salleh ◽  
Mohd Riduan Jamalludin ◽  
...  

The purpose of this work is to study the effect of kaolin particle size for the preparation of low cost ceramic membrane suspension and ceramic membrane structure. Kaolin particle size is categorized into two categories; i) ≤ 1µm and ii) ≥ 1 µm. The suspension is prepared via stirring technique under 1000 rpm at 60°C. The particle size of kaolin is characterized using field emission scanning electron microscope (FESEM) and the prepared suspension is characterized in term of its viscosity. Results indicate that the particle size gave significant effect to the viscosity of ceramic membrane suspension. Preliminary data showed that kaolin with particle size ≤ 1µm resulted ceramic membrane with dense structure.


2022 ◽  
Author(s):  
Sanjeev Kumar Kanth ◽  
Anjli Sharma ◽  
Byong Chon Park ◽  
Woon Song ◽  
Hyun Rhu ◽  
...  

Abstract We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion x, y and z and one-dimensional rotational motion θ. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0º as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.


1993 ◽  
Vol 12 (2) ◽  
pp. 154-154
Author(s):  
Stephen Tatman

Abstract. The preparation of microfossil specimens for study with the scanning electron microscope involves the transfer of material from slides to stubs. Specimens must then be oriented and mounted securely. To do this accurately the slide and stub should both be viewed through a stereomicroscope. However due to differences in shape and height, both surfaces are not usually in the plane of focus at the same time. Many micropalaeontologists routinely use small boxes or sample tube lids to hold the stub and refocus before finally mounting the specimens. The risk of dropping specimens is reduced by using a single carrier, securely holding both the slide and stub. The design illustrated below (fig.1) was developed from a prototype constructed from cardboard and plastic. The metal unit can easily be made in a workshop at a very low cost or cardboard versions made in the laboratory.The stage is based on the principle that both slide and stub should be held securely, close together and in the same plane of focus. The slide holders should be secure but not too tight otherwise the stub may be jarred as slides are changed. The number of slides which can be held on one unit may be varied. The presence of two holders has proved useful, any more could make the unit cumbersome. If the microscope to be used does not have a wide stage then it may prove more practical to have only one holder.The stub holders allow the stub to be clamped to . . .


Sign in / Sign up

Export Citation Format

Share Document