Transient Latch-Up Analysis of Power Control Device with Combined Light Emission and Backside Transient Interferometric Mapping Methods

Author(s):  
M. Heer ◽  
D. Pogany ◽  
M. Street ◽  
I. Smith ◽  
F. Riedlberger ◽  
...  

Abstract A case study of a transient induced latch-up (TLU) problem is presented, which was identified during the development of a 60 V, 0.8 µm BiCMOS power control device. The mechanism was characterized by controlled transient latch-up testing and found to be fairly unusual, being triggered by a fast decreasing not necessarily negative spike or glitch on the positive supply pin. Emission Microscopy (EMMI) and Transient Interferometric Mapping (TIM) successfully located the parasitic silicon controlled rectifiers (SCR) structure. TIM is an infra-red laser beam based technique for back side analysis. TIM analysis enables concurrent imaging of carrier injection and heating in nanosecond timescale providing more detailed information on the SCR action than more often used static photon emission or dynamic TLP / PICA imaging.

Author(s):  
S. Elliott ◽  
M. LaPierre ◽  
P. Plourde

Abstract A case study of a transient induced latch-up (TLU) problem is presented, which was identified during the development of a 60 V, 0.8 µm BiCMOS power control device. The mechanism was characterized by controlled transient latch-up testing and found to be fairly unusual, being triggered by a fast decreasing not necessarily negative spike or glitch on the positive supply pin. Emission Microscopy (EMMI) and Transient Interferometric Mapping (TIM) successfully located the parasitic silicon controlled rectifiers (SCR) structure. TIM is an infra-red laser beam based technique for back side analysis. TIM analysis enables concurrent imaging of carrier injection and heating in nanosecond timescale providing more detailed information on the SCR action than more often used static photon emission or dynamic TLP / PICA imaging.


Author(s):  
Ranganathan Gopinath ◽  
Ravikumar Venkat Krishnan ◽  
Lua Winson ◽  
Phoa Angeline ◽  
Jin Jie

Abstract Dynamic Photon Emission Microscopy (D-PEM) is an established technique for isolating short and open failures, where photons emitted by transistors are collected by sensitive infra-red detectors while the device under test is electrically exercised with automated test equipment (ATE). Common tests, such as scan, use patterns that are generated through Automatic Test Pattern Generator (ATPG) in compressed mode. When these patterns are looped for D-PEM, it results in indeterministic states within cells during the load or unload sequences, making interpretation of emission challenging. Moreover, photons are emitted with lower probability and lesser energies for smaller technology nodes such as the FinFET. In this paper, we will discuss executing scan tests in manners that can be used to bring out emission which did not show up in conventional test loops.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
Thierry Parrassin ◽  
Sylvain Dudit ◽  
Michel Vallet ◽  
Antoine Reverdy ◽  
Hervé Deslandes

Abstract By adding a transmission grating into the optical path of our photon emission system and after calibration, we have completed several failure analysis case studies. In some cases, additional information on the emission sites is provided, as well as understanding of the behavior of transistors that are associated to the fail site. The main application of the setup is used for finding and differentiating easily related emission spots without advance knowledge in light emission mechanisms in integrated circuits.


Author(s):  
M. Palaniappan ◽  
V. Ng ◽  
R. Heiderhoff ◽  
J.C.H. Phang ◽  
G.B.M. Fiege ◽  
...  

Abstract Light emission and heat generation of Si devices have become important in understanding physical phenomena in device degradation and breakdown mechanisms. This paper correlates the photon emission with the temperature distribution of a short channel nMOSFET. Investigations have been carried out to localize and characterize the hot spots using a spectroscopic photon emission microscope and a scanning thermal microscope. Frontside investigations have been carried out and are compared and discussed with backside investigations. A method has been developed to register the backside thermal image with the backside illuminated image.


Author(s):  
Hung-Sung Lin ◽  
Ying-Chin Hou ◽  
Juimei Fu ◽  
Mong-Sheng Wu ◽  
Vincent Huang ◽  
...  

Abstract The difficulties in identifying the precise defect location and real leakage path is increasing as the integrated circuit design and process have become more and more complicated in nano scale technology node. Most of the defects causing chip leakage are detectable with only one of the FA (Failure Analysis) tools such as LCD (Liquid Crystal Detection) or PEM (Photon Emission Microscope). However, due to marginality of process-design interaction some defects are often not detectable with only one FA tool [1][2]. This paper present an example of an abnormal power consumption process-design interaction related defect which could only be detected with more advanced FA tools.


1994 ◽  
Vol 08 (02) ◽  
pp. 69-92 ◽  
Author(s):  
XUN WANG

In this review article, we give a new insight into the luminescence mechanism of porous silicon. First, we observed a “pinning” characteristic of photoluminescent peaks for as-etched porous silicon samples. It was explained as resulting from the discontinuous variation of the size of Si nanostructures, i.e. the size quantization. A tight-binding calculation of the energy band gap widening versus the dimension of nanoscale Si based on the closed-shell Si cluster model agrees well with the experimental observations. Second, the blue-light emission from porous silicon was achieved by using boiling water treatment. By investigating the luminescence micrographic images and the decaying behaviors of PL spectra, it has been shown that the blue-light emission is believed to be originated from the porous silicon skeleton rather than the surface contaminations. The conditions for achieving blue light need proper size of Si nanostructures, low-surface recombination velocity, and mechanically strong skeleton. The fulfillment of these conditions simultaneously is possible but rather critical. Third, the exciton dynamics in light-emitting porous silicon is studied by using the temperature-dependent and picosecond time-resolved luminescence spectroscopy. A direct evidence of the existence of confined excitons induced by the quantum size effect has been revealed. Two excitation states are found to be responsible for the visible light emission, i.e. a higher lying energy state corresponding to the confined excitons in Si nanostructures and a lower lying state related with surfaces of Si wires or dots. A picture of the carrier transfer between the quantum confined state and the surface localized state has been proposed. Finally, we investigated the transient electroluminescence behaviors of Au/porous silicon/Si/Al structure and found it is very similar to that of an ordinary p-n junction light-emitting diode. The mechanism of electroluminescence is explained as the carrier injection through the Au/porous silicon Schotky barrier and the porous silicon/p-Si heterojunction into the corrugated Si wires, where the radiative recombination of carriers occurs.


Sign in / Sign up

Export Citation Format

Share Document