Validation of FHWA Crash Models for Rural Intersections: Lessons Learned

Author(s):  
Jutaek Oh ◽  
Craig Lyon ◽  
Simon Washington ◽  
Bhagwant Persaud ◽  
Joe Bared

A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including ( a) assessment of the logical defensibility of proposed models, ( b) assessment of the transferability of models over future time periods and across different geographic locations, and ( c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.

2021 ◽  
Vol 10 (7) ◽  
pp. 1470
Author(s):  
Giorgio Bedogni ◽  
Sofia Tamini ◽  
Diana Caroli ◽  
Sabrina Cicolini ◽  
Marco Domenicali ◽  
...  

To develop predictive models of fatty liver (FL), we performed a cross-sectional retrospective study of 1672 obese children with a median (interquartile range) age of 15 (13–16) years. The outcome variable was FL diagnosed by ultrasonography. The potential predictors were: (1) binary: sex; (2) continuous: age, body mass index (BMI), waist circumference (WC), alanine transaminase (ALT), aspartate transaminase, gamma-glutamyltransferase, glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), HDL-cholesterol, LDL-cholesterol, triglycerides, mean arterial pressure, uric acid, and c-reactive protein; (3) ordinal: Pubertal status. Bootstrapped multivariable logistic regression with fractional polynomials was used to develop the models. Two models were developed and internally validated, one using BMI and the other using WC as the anthropometric predictor. Both models included ALT, HOMA-IR, triglycerides, and uric acid as predictors, had similar discrimination (c-statistic = 0.81), and were similarly well calibrated as determined by calibration plots. These models should undergo external validation before being employed in clinical or research practice.


2012 ◽  
Vol 8 (3) ◽  
pp. 251-262 ◽  
Author(s):  
Nehalennia van Hanegem ◽  
Maria C Breijer ◽  
Brent C Opmeer ◽  
Ben WJ Mol ◽  
Anne Timmermans

Postmenopausal bleeding is associated with an elevated risk of having endometrial cancer. The aim of this review is to give an overview of existing prediction models on endometrial cancer in women with postmenopausal bleeding. In a systematic search of the literature, we identified nine prognostic studies, of which we assessed the quality, the different phases of development and their performance. From these data, we identified the most important predictor variables. None of the detected models completed external validation or impact analysis. Models including power Doppler showed best performance in internal validation, but Doppler in general gynecological practice is not easily accessible. We can conclude that we have indications that the first step in the approach of women with postmenopausal bleeding should be to distinguish between women with low risk versus high risk of having endometrial carcinoma and the next step would be to refer patients for further (invasive) testing.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jinzhang Li ◽  
Ming Gong ◽  
Yashutosh Joshi ◽  
Lizhong Sun ◽  
Lianjun Huang ◽  
...  

BackgroundAcute renal failure (ARF) is the most common major complication following cardiac surgery for acute aortic syndrome (AAS) and worsens the postoperative prognosis. Our aim was to establish a machine learning prediction model for ARF occurrence in AAS patients.MethodsWe included AAS patient data from nine medical centers (n = 1,637) and analyzed the incidence of ARF and the risk factors for postoperative ARF. We used data from six medical centers to compare the performance of four machine learning models and performed internal validation to identify AAS patients who developed postoperative ARF. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to compare the performance of the predictive models. We compared the performance of the optimal machine learning prediction model with that of traditional prediction models. Data from three medical centers were used for external validation.ResultsThe eXtreme Gradient Boosting (XGBoost) algorithm performed best in the internal validation process (AUC = 0.82), which was better than both the logistic regression (LR) prediction model (AUC = 0.77, p < 0.001) and the traditional scoring systems. Upon external validation, the XGBoost prediction model (AUC =0.81) also performed better than both the LR prediction model (AUC = 0.75, p = 0.03) and the traditional scoring systems. We created an online application based on the XGBoost prediction model.ConclusionsWe have developed a machine learning model that has better predictive performance than traditional LR prediction models as well as other existing risk scoring systems for postoperative ARF. This model can be utilized to provide early warnings when high-risk patients are found, enabling clinicians to take prompt measures.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ming-Hui Hung ◽  
Ling-Chieh Shih ◽  
Yu-Ching Wang ◽  
Hsin-Bang Leu ◽  
Po-Hsun Huang ◽  
...  

Objective: This study aimed to develop machine learning-based prediction models to predict masked hypertension and masked uncontrolled hypertension using the clinical characteristics of patients at a single outpatient visit.Methods: Data were derived from two cohorts in Taiwan. The first cohort included 970 hypertensive patients recruited from six medical centers between 2004 and 2005, which were split into a training set (n = 679), a validation set (n = 146), and a test set (n = 145) for model development and internal validation. The second cohort included 416 hypertensive patients recruited from a single medical center between 2012 and 2020, which was used for external validation. We used 33 clinical characteristics as candidate variables to develop models based on logistic regression (LR), random forest (RF), eXtreme Gradient Boosting (XGboost), and artificial neural network (ANN).Results: The four models featured high sensitivity and high negative predictive value (NPV) in internal validation (sensitivity = 0.914–1.000; NPV = 0.853–1.000) and external validation (sensitivity = 0.950–1.000; NPV = 0.875–1.000). The RF, XGboost, and ANN models showed much higher area under the receiver operating characteristic curve (AUC) (0.799–0.851 in internal validation, 0.672–0.837 in external validation) than the LR model. Among the models, the RF model, composed of 6 predictor variables, had the best overall performance in both internal and external validation (AUC = 0.851 and 0.837; sensitivity = 1.000 and 1.000; specificity = 0.609 and 0.580; NPV = 1.000 and 1.000; accuracy = 0.766 and 0.721, respectively).Conclusion: An effective machine learning-based predictive model that requires data from a single clinic visit may help to identify masked hypertension and masked uncontrolled hypertension.


2019 ◽  
Vol 14 (4) ◽  
pp. 506-514 ◽  
Author(s):  
Pavan Kumar Bhatraju ◽  
Leila R. Zelnick ◽  
Ronit Katz ◽  
Carmen Mikacenic ◽  
Susanna Kosamo ◽  
...  

Background and objectivesCritically ill patients with worsening AKI are at high risk for poor outcomes. Predicting which patients will experience progression of AKI remains elusive. We sought to develop and validate a risk model for predicting severe AKI within 72 hours after intensive care unit admission.Design, setting, participants, & measurementsWe applied least absolute shrinkage and selection operator regression methodology to two prospectively enrolled, critically ill cohorts of patients who met criteria for the systemic inflammatory response syndrome, enrolled within 24–48 hours after hospital admission. The risk models were derived and internally validated in 1075 patients and externally validated in 262 patients. Demographics and laboratory and plasma biomarkers of inflammation or endothelial dysfunction were used in the prediction models. Severe AKI was defined as Kidney Disease Improving Global Outcomes (KDIGO) stage 2 or 3.ResultsSevere AKI developed in 62 (8%) patients in the derivation, 26 (8%) patients in the internal validation, and 15 (6%) patients in the external validation cohorts. In the derivation cohort, a three-variable model (age, cirrhosis, and soluble TNF receptor-1 concentrations [ACT]) had a c-statistic of 0.95 (95% confidence interval [95% CI], 0.91 to 0.97). The ACT model performed well in the internal (c-statistic, 0.90; 95% CI, 0.82 to 0.96) and external (c-statistic, 0.93; 95% CI, 0.89 to 0.97) validation cohorts. The ACT model had moderate positive predictive values (0.50–0.95) and high negative predictive values (0.94–0.95) for severe AKI in all three cohorts.ConclusionsACT is a simple, robust model that could be applied to improve risk prognostication and better target clinical trial enrollment in critically ill patients with AKI.


2017 ◽  
Vol 21 (18) ◽  
pp. 1-100 ◽  
Author(s):  
Shakila Thangaratinam ◽  
John Allotey ◽  
Nadine Marlin ◽  
Ben W Mol ◽  
Peter Von Dadelszen ◽  
...  

BackgroundThe prognosis of early-onset pre-eclampsia (before 34 weeks’ gestation) is variable. Accurate prediction of complications is required to plan appropriate management in high-risk women.ObjectiveTo develop and validate prediction models for outcomes in early-onset pre-eclampsia.DesignProspective cohort for model development, with validation in two external data sets.SettingModel development: 53 obstetric units in the UK. Model transportability: PIERS (Pre-eclampsia Integrated Estimate of RiSk for mothers) and PETRA (Pre-Eclampsia TRial Amsterdam) studies.ParticipantsPregnant women with early-onset pre-eclampsia.Sample sizeNine hundred and forty-six women in the model development data set and 850 women (634 in PIERS, 216 in PETRA) in the transportability (external validation) data sets.PredictorsThe predictors were identified from systematic reviews of tests to predict complications in pre-eclampsia and were prioritised by Delphi survey.Main outcome measuresThe primary outcome was the composite of adverse maternal outcomes established using Delphi surveys. The secondary outcome was the composite of fetal and neonatal complications.AnalysisWe developed two prediction models: a logistic regression model (PREP-L) to assess the overall risk of any maternal outcome until postnatal discharge and a survival analysis model (PREP-S) to obtain individual risk estimates at daily intervals from diagnosis until 34 weeks. Shrinkage was used to adjust for overoptimism of predictor effects. For internal validation (of the full models in the development data) and external validation (of the reduced models in the transportability data), we computed the ability of the models to discriminate between those with and without poor outcomes (c-statistic), and the agreement between predicted and observed risk (calibration slope).ResultsThe PREP-L model included maternal age, gestational age at diagnosis, medical history, systolic blood pressure, urine protein-to-creatinine ratio, platelet count, serum urea concentration, oxygen saturation, baseline treatment with antihypertensive drugs and administration of magnesium sulphate. The PREP-S model additionally included exaggerated tendon reflexes and serum alanine aminotransaminase and creatinine concentration. Both models showed good discrimination for maternal complications, with anoptimism-adjustedc-statistic of 0.82 [95% confidence interval (CI) 0.80 to 0.84] for PREP-L and 0.75 (95% CI 0.73 to 0.78) for the PREP-S model in the internal validation. External validation of the reduced PREP-L model showed good performance with ac-statistic of 0.81 (95% CI 0.77 to 0.85) in PIERS and 0.75 (95% CI 0.64 to 0.86) in PETRA cohorts for maternal complications, and calibrated well with slopes of 0.93 (95% CI 0.72 to 1.10) and 0.90 (95% CI 0.48 to 1.32), respectively. In the PIERS data set, the reduced PREP-S model had ac-statistic of 0.71 (95% CI 0.67 to 0.75) and a calibration slope of 0.67 (95% CI 0.56 to 0.79). Low gestational age at diagnosis, high urine protein-to-creatinine ratio, increased serum urea concentration, treatment with antihypertensive drugs, magnesium sulphate, abnormal uterine artery Doppler scan findings and estimated fetal weight below the 10th centile were associated with fetal complications.ConclusionsThe PREP-L model provided individualised risk estimates in early-onset pre-eclampsia to plan management of high- or low-risk individuals. The PREP-S model has the potential to be used as a triage tool for risk assessment. The impacts of the model use on outcomes need further evaluation.Trial registrationCurrent Controlled Trials ISRCTN40384046.FundingThe National Institute for Health Research Health Technology Assessment programme.


Author(s):  
Husnul Fatimah

One of the focal points in the field of health is malnutrition in toddlers. Malnutrition resulting from lack of substance is impaired health necessary for nutrition growth and development. The effect of malnutrition in the child will affect their physics and intelligence and lost generation. According to WHO data (2016), about 45 % of death among children under 5 years old of was malnutrition. Malnutrition in the prevalence of the average national level reached 13,8 % and now malnutrition case is 19 % in South Kalimantan, this indicates that is above the average Kalimantan prevalence of malnutrition. Need the intervention to change the attitude of society knowledge and community empowerment that were lacking in providing healthier community. By way of MCH supporter program which apply the principle of empowerment communities through a program consisting of various efforts to improve the nutritional status of a child who carried out in Jingah Habang Ulu villages with 30 mothers as the sample. The methodology applied is quantitative research with a cross-sectional and use comparative test using statistic application. The result showed the knowledge (p-value=0,000), the differences in attitude (p-value=0,003), and the different of children weight (p-value=0,000). There were differences of knowledge, the toddler’s mother attitude, and children's weight before and after foster mother programs.


Author(s):  
Huayu Zhang ◽  
Ting Shi ◽  
Xiaodong Wu ◽  
Xin Zhang ◽  
Kun Wang ◽  
...  

AbstractBackgroundAccurate risk prediction of clinical outcome would usefully inform clinical decisions and intervention targeting in COVID-19. The aim of this study was to derive and validate risk prediction models for poor outcome and death in adult inpatients with COVID-19.MethodsModel derivation using data from Wuhan, China used logistic regression with death and poor outcome (death or severe disease) as outcomes. Predictors were demographic, comorbidity, symptom and laboratory test variables. The best performing models were externally validated in data from London, UK.Findings4.3% of the derivation cohort (n=775) died and 9.7% had a poor outcome, compared to 34.1% and 42.9% of the validation cohort (n=226). In derivation, prediction models based on age, sex, neutrophil count, lymphocyte count, platelet count, C-reactive protein and creatinine had excellent discrimination (death c-index=0.91, poor outcome c-index=0.88), with good-to-excellent calibration. Using two cut-offs to define low, high and very-high risk groups, derivation patients were stratified in groups with observed death rates of 0.34%, 15.0% and 28.3% and poor outcome rates 0.63%, 8.9% and 58.5%. External validation discrimination was good (c-index death=0.74, poor outcome=0.72) as was calibration. However, observed rates of death were 16.5%, 42.9% and 58.4% and poor outcome 26.3%, 28.4% and 64.8% in predicted low, high and very-high risk groups.InterpretationOur prediction model using demography and routinely-available laboratory tests performed very well in internal validation in the lower-risk derivation population, but less well in the much higher-risk external validation population. Further external validation is needed. Collaboration to create larger derivation datasets, and to rapidly externally validate all proposed prediction models in a range of populations is needed, before routine implementation of any risk prediction tool in clinical care.FundingMRC, Wellcome Trust, HDR-UK, LifeArc, participating hospitals, NNSFC, National Key R&D Program, Pudong Health and Family Planning CommissionResearch in contextEvidence before this studySeveral prognostic models for predicting mortality risk, progression to severe disease, or length of hospital stay in COVID-19 have been published.1 Commonly reported predictors of severe prognosis in patients with COVID-19 include age, sex, computed tomography scan features, C-reactive protein (CRP), lactic dehydrogenase, and lymphocyte count. Symptoms (notably dyspnoea) and comorbidities (e.g. chronic lung disease, cardiovascular disease and hypertension) are also reported to have associations with poor prognosis.2 However, most studies have not described the study population or intended use of prediction models, and external validation is rare and to date done using datasets originating from different Wuhan hospitals.3 Given different patterns of testing and organisation of healthcare pathways, external validation in datasets from other countries is required.Added value of this studyThis study used data from Wuhan, China to derive and internally validate multivariable models to predict poor outcome and death in COVID-19 patients after hospital admission, with external validation using data from King’s College Hospital, London, UK. Mortality and poor outcome occurred in 4.3% and 9.7% of patients in Wuhan, compared to 34.1% and 42.9% of patients in London. Models based on age, sex and simple routinely available laboratory tests (lymphocyte count, neutrophil count, platelet count, CRP and creatinine) had good discrimination and calibration in internal validation, but performed only moderately well in external validation. Models based on age, sex, symptoms and comorbidity were adequate in internal validation for poor outcome (ICU admission or death) but had poor performance for death alone.Implications of all the available evidenceThis study and others find that relatively simple risk prediction models using demographic, clinical and laboratory data perform well in internal validation but at best moderately in external validation, either because derivation and external validation populations are small (Xie et al3) and/or because they vary greatly in casemix and severity (our study). There are three decision points where risk prediction may be most useful: (1) deciding who to test; (2) deciding which patients in the community are at high-risk of poor outcomes; and (3) identifying patients at high-risk at the point of hospital admission. Larger studies focusing on particular decision points, with rapid external validation in multiple datasets are needed. A key gap is risk prediction tools for use in community triage (decisions to admit, or to keep at home with varying intensities of follow-up including telemonitoring) or in low income settings where laboratory tests may not be routinely available at the point of decision-making. This requires systematic data collection in community and low-income settings to derive and evaluate appropriate models.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shanshan Gao ◽  
Gang Yin ◽  
Qing Xia ◽  
Guihai Wu ◽  
Jinxiu Zhu ◽  
...  

Background: The existing prediction models lack the generalized applicability for chronic heart failure (CHF) readmission. We aimed to develop and validate a widely applicable nomogram for the prediction of 180-day readmission to the patients.Methods: We prospectively enrolled 2,980 consecutive patients with CHF from two hospitals. A nomogram was created to predict 180-day readmission based on the selected variables. The patients were divided into three datasets for development, internal validation, and external validation (mean age: 74.2 ± 14.1, 73.8 ± 14.2, and 71.0 ± 11.7 years, respectively; sex: 50.2, 48.8, and 55.2% male, respectively). At baseline, 102 variables were submitted to the least absolute shrinkage and selection operator (Lasso) regression algorithm for variable selection. The selected variables were processed by the multivariable Cox proportional hazards regression modeling combined with univariate analysis and stepwise regression. The model was evaluated by the concordance index (C-index) and calibration plot. Finally, the nomogram was provided to visualize the results. The improvement in the regression model was calculated by the net reclassification index (NRI) (with tenfold cross-validation and 200 bootstraps).Results: Among the selected 2,980 patients, 1,696 (56.9%) were readmitted within 180 days, and 1,502 (50.4%) were men. A nomogram was established by the results of Lasso regression, univariate analysis, stepwise regression and multivariate Cox regression, as well as variables with clinical significance. The values of the C-index were 0.75 [95% confidence interval (CI): 0.72–0.79], 0.75 [95% CI: 0.69–0.81], and 0.73 [95% CI: 0.64–0.83] for the development, internal validation, and external validation datasets, respectively. Calibration plots were provided for both the internal and external validation sets. Five variables including history of acute heart failure, emergency department visit, age, blood urea nitrogen level, and beta blocker usage were considered in the final prediction model. When adding variables involving hospital discharge way, alcohol taken and left bundle branch block, the calculated values of NRI demonstrated no significant improvements.Conclusions: A nomogram for the prediction of 180-day readmission of patients with CHF was developed and validated based on five variables. The proposed methodology can improve the accurate prediction of patient readmission and have the wide applications for CHF.


2017 ◽  
Vol 47 (7) ◽  
pp. 1163-1178 ◽  
Author(s):  
E. Studerus ◽  
A. Ramyead ◽  
A. Riecher-Rössler

BackgroundTo enhance indicated prevention in patients with a clinical high risk (CHR) for psychosis, recent research efforts have been increasingly directed towards estimating the risk of developing psychosis on an individual level using multivariable clinical prediction models. The aim of this study was to systematically review the methodological quality and reporting of studies developing or validating such models.MethodA systematic literature search was carried out (up to 14 March 2016) to find all studies that developed or validated a clinical prediction model predicting the transition to psychosis in CHR patients. Data were extracted using a comprehensive item list which was based on current methodological recommendations.ResultsA total of 91 studies met the inclusion criteria. None of the retrieved studies performed a true external validation of an existing model. Only three studies (3.5%) had an event per variable ratio of at least 10, which is the recommended minimum to avoid overfitting. Internal validation was performed in only 14 studies (15%) and seven of these used biased internal validation strategies. Other frequently observed modeling approaches not recommended by methodologists included univariable screening of candidate predictors, stepwise variable selection, categorization of continuous variables, and poor handling and reporting of missing data.ConclusionsOur systematic review revealed that poor methods and reporting are widespread in prediction of psychosis research. Since most studies relied on small sample sizes, did not perform internal or external cross-validation, and used poor model development strategies, most published models are probably overfitted and their reported predictive accuracy is likely to be overoptimistic.


Sign in / Sign up

Export Citation Format

Share Document