scholarly journals RECENT TRENDS IN DENGUE DETECTION METHODS USING BIOSENSORS

2018 ◽  
Vol 19 (2) ◽  
pp. 134-153 ◽  
Author(s):  
AHMAD ANWAR ZAINUDDIN ◽  
ANIS NURASHIKIN NORDIN ◽  
ROSMINAZUIN AB RAHIM

ABSTRACT: Dengue illness is an infectious tropical disease, transmitted by Aedes mosquitos, that poses a serious health threat to the tropical world. This disease causes widespread infection worldwide, with about 50 million cases of dengue occurring per annum out of which 500,000 recorded cases of dengue hemorrhagic fever and 22,000 deaths.  Currently, there are no effective vaccines available to prevent the spread of the infection. Accurate and rapid laboratory diagnostic tests are required for early detection to reduce patient mortality rate. In this paper,  common laboratory diagnosis methods for detecting dengue virus infection are discussed. Currently, virus isolation, RT-PCR and serology methods provide the most direct and accurate response for detection of dengue. However, these methods require tedious steps, expensive requirements and expert staffs. Recent research have proposed the usage of biosensors as an alternative new technology for detection of dengue. In this work, various types of biosensors such as electrochemical, piezoelectric, and optical biosensor have been described and compared to evaluate their effectiveness in dengue detection.  It is observed that the optical biosensor offers the best detection due to its high sensitivity as compared to others, although it is popularly known as an expensive method. Alternatively, the use of electrochemical and piezoelectric biosensors (QCM) is highly recommended for detection of dengue due to their ease-of-use, low cost, low reagent consumption, disposability, and minimal sample preparation. These approaches have the potential to improve the rate of survival, particularly in resource-limited countries. ABSTRAK: Virus denggi adalah penyakit berjangkit tropika bawaan nyamuk Aedes yang menimbulkan ancaman serius kepada kesihatan global. Penyakit ini menyebabkan jangkitan yang meluas di seluruh dunia, dengan kira-kira 50 juta kes denggi yang berlaku setiap tahun di mana 500,000 kes demam denggi berdarah dan 22,000 kematian direkodkan. Buat masa ini, tiada vaksin yang berkesan untuk mencegah penyebaran jangkitan ini. Ujian diagnostik makmal yang cepat dan tepat diperlukan untuk pengesanan denggi awal untuk mengurangkan kadar kematian pesakit. Dalam artikel ini, kaedah diagnosis makmal yang biasa dilakukan untuk mengesahkan jangkitan virus denggi akan dibincangkan. Pada masa kini, kaedah pengasingan virus, RT-PCR dan serologi adalah tindak balas yang paling cepat dan tepat untuk mengesan denggi. Walau bagaimanapun, kaedah-kaedah ini memerlukan langkah-langkah yang melecehkan, kos penyelenggaraan yang tinggi dan kakitangan  yang terlatih.  Penyelidikan terkini telah mencadangkan penggunaan biosensor sebagai teknologi baru alternatif untuk mengesan denggi.  Dalam artikel  ini juga pelbagai jenis biosensor seperti biosensor elektrokimia, piezoelektrik, dan biosensor optik telah dijelaskan dan dibandingkan untuk menilai keberkesanannya dalam pengesanan denggi. Difahamkan bahawa biosensor optik menawarkan pengesanan terbaik kerana kepekaannya yang tinggi berbanding dengan yang lain, walaupun ia dikenali sebagai kaedah berkos tinggi. Sebaliknya, biosensor elektrokimia dan piezoelektrik (QCM) sangat disyorkan untuk mengesan denggi kerana ia mudah digunakan, berkos rendah, penggunaan bahan uji yang terhad, boleh dipakai buang, dan mempunyai penyediaan sampel yang minima. Pendekatan-pendekatan ini berpotensi untuk meningkatkan kadar kemandirian di kawasan-kawasan sumber terhad.

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4916 ◽  
Author(s):  
Qiaoyun Wu ◽  
Yunzhe Zhang ◽  
Qian Yang ◽  
Ning Yuan ◽  
Wei Zhang

The vital importance of rapid and accurate detection of food borne pathogens has driven the development of biosensor to prevent food borne illness outbreaks. Electrochemical DNA biosensors offer such merits as rapid response, high sensitivity, low cost, and ease of use. This review covers the following three aspects: food borne pathogens and conventional detection methods, the design and fabrication of electrochemical DNA biosensors and several techniques for improving sensitivity of biosensors. We highlight the main bioreceptors and immobilizing methods on sensing interface, electrochemical techniques, electrochemical indicators, nanotechnology, and nucleic acid-based amplification. Finally, in view of the existing shortcomings of electrochemical DNA biosensors in the field of food borne pathogen detection, we also predict and prospect future research focuses from the following five aspects: specific bioreceptors (improving specificity), nanomaterials (enhancing sensitivity), microfluidic chip technology (realizing automate operation), paper-based biosensors (reducing detection cost), and smartphones or other mobile devices (simplifying signal reading devices).


2020 ◽  
Author(s):  
Karina Rossi da Silva ◽  
William Ribeiro da Silva ◽  
Bianca Piraccini Silva ◽  
Adriano Nobre Arcos ◽  
Francisco A. da Silva Ferreira ◽  
...  

AbstractThe control of arboviruses carried by Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) can be performed with tools that monitor and reduce the circulation of these vectors. Therefore, the efficiency of four types of traps in capturing A. aegypti and A. albopictus eggs and adults, with the biological product Vectobac WG®, was evaluated in the field. For this, 20 traps were installed in two locations, which were in the South (Londrina, Paraná) and North (Manaus, Amazonas) Regions of Brazil, from March to April 2017 and January to February 2018, respectively. The UELtrap-E and UELtrap-EA traps captured A. aegypti and A. albopictus eggs: 1703/1866 eggs in Londrina, and 10268/2149 eggs in Manaus, respectively, and presented high ovitraps positivity index (OPI) values (averages: 100%/100% in Londrina, and 100%/96% in Manaus, respectively); and high egg density index (EDI) values (averages: 68/75 in Londrina, and 411/89 in Manaus, respectively), so they had statistically superior efficiency to that of the CRtrap-E and CRtrap-EA traps in both regions, that captured less eggs and adults: 96/69 eggs in Londrina, and 1091/510 eggs in Manaus, respectively. Also presented lower OPI values (averages: 28%/4% in Londrina, and 88%/60% in Manaus, respectively); and lower EDI values (averages: 10.5/9 in Londrina, and 47/30 in Manaus, respectively). The capture ratios of Aedes adults in the UELtrap-EA and CRtrap-EA traps in Londrina and Manaus were 53.3%/29.5% and 0%/9.8%, respectively. UELtrap-E and UELtrap-EA can be adopted as efficient tools for Aedes monitoring due to their high sensitivity, low cost and ease of use.Author summaryAedes aegypti and Aedes albopictus are species of mosquitoes responsible for the transmission of several arboviruses that cause infections worldwide. However, there are still no effective and safe vaccines or medications to prevent or treat arboviruses transmitted by these vectors, except for yellow fever. Moreover, current methodologies for monitoring and controlling A. aegypti and A. albopictus are not fully effective, as evidenced by the increasing cases of the arbovirus transmitted by these mosquitoes or have incompatible costs with the socioeconomic conditions of a large number of people. Thus, the traps tested in this study can be used as more effective and economical tools for monitoring and controlling A. aegypti and A. albopictus, since they are made with low cost material and they showed high efficiency in the capture of eggs, evidenced by the high values of ovitraps positive index and eggs density index, besides that one of the models captured Aedes spp. adults in both regions where they were tested. Therefore, the traps have potential for reducing Aedes spp. eggs and adults in the environment and sensibility for determining the local infestation index, which can be reconciled with official government strategies for more accurate vector monitoring and control actions.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongke Qu ◽  
Chunmei Fan ◽  
Mingjian Chen ◽  
Xiangyan Zhang ◽  
Qijia Yan ◽  
...  

AbstractThe cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods. Graphical Abstract


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1030 ◽  
Author(s):  
Guangyang Liu ◽  
Xiaodong Huang ◽  
Lingyun Li ◽  
Xiaomin Xu ◽  
Yanguo Zhang ◽  
...  

Molecular imprinting technology (MIT), also known as molecular template technology, is a new technology involving material chemistry, polymer chemistry, biochemistry, and other multi-disciplinary approaches. This technology is used to realize the unique recognition ability of three-dimensional crosslinked polymers, called the molecularly imprinted polymers (MIPs). MIPs demonstrate a wide range of applicability, good plasticity, stability, and high selectivity, and their internal recognition sites can be selectively combined with template molecules to achieve selective recognition. A molecularly imprinted fluorescence sensor (MIFs) incorporates fluorescent materials (fluorescein or fluorescent nanoparticles) into a molecularly imprinted polymer synthesis system and transforms the binding sites between target molecules and molecularly imprinted materials into readable fluorescence signals. This sensor demonstrates the advantages of high sensitivity and selectivity of fluorescence detection. Molecularly imprinted materials demonstrate considerable research significance and broad application prospects. They are a research hotspot in the field of food and environment safety sensing analysis. In this study, the progress in the construction and application of MIFs was reviewed with emphasis on the preparation principle, detection methods, and molecular recognition mechanism. The applications of MIFs in food and environment safety detection in recent years were summarized, and the research trends and development prospects of MIFs were discussed.


2020 ◽  
Vol 40 (1) ◽  
pp. 1-11
Author(s):  
Ning Xu ◽  
Shuang Jin ◽  
Li Wang

Abstract With the progress of analysis technology and nanotechnology, colorimetric detection has become one of the research hotspots in the field of analytical chemistry. Compared with traditional detection methods, the colorimetric method has many advantages, such as high sensitivity, good selectivity, convenience and fast, as well as low cost. In recent years, metal nanoparticles have been introduced into colorimetry, making the research and application of colorimetry develop rapidly. In this work, we summarize the usual colorimetric detection methods based on metal nanoparticles-based nanozymes and their applications in the last five years. We hope that this work will help readers understand the mechanism and practical application value of nanozyme-based colorimetric biosensors. Meanwhile, this work may give some hints and references for future colorimetric detection research to promote the application and development of nanozyme-based colorimetry in biomedical and environmental analysis.


Author(s):  
Chenyu Li ◽  
David N. Debruyne ◽  
Julia Spencer ◽  
Vidushi Kapoor ◽  
Lily Y. Liu ◽  
...  

AbstractMany detection methods have been used or reported for the diagnosis and/or surveillance of COVID-19. Among them, reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used because of its high sensitivity, typically claiming detection of about 5 copies of viruses. However, it has been reported that only 47-59% of the positive cases were identified by some RT-PCR methods, probably due to low viral load, timing of sampling, degradation of virus RNA in the sampling process, or possible mutations spanning the primer binding sites. Therefore, alternative and highly sensitive methods are imperative. With the goal of improving sensitivity and accommodating various application settings, we developed a multiplex-PCR-based method comprised of 343 pairs of specific primers, and demonstrated its efficiency to detect SARS-CoV-2 at low copy numbers. The assay produced clean characteristic target peaks of defined sizes, which allowed for direct identification of positives by electrophoresis. We further amplified the entire SARS-CoV-2 genome from 8 to half a million viral copies purified from 13 COVID-19 positive specimens, and detected mutations through next generation sequencing. Finally, we developed a multiplex-PCR-based metagenomic method in parallel, that required modest sequencing depth for uncovering SARS-CoV-2 mutational diversity and potentially novel or emerging isolates.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7840
Author(s):  
Fang Dao ◽  
Yun Zeng ◽  
Yidong Zou ◽  
Xiang Li ◽  
Jing Qian

The health of the hydroelectric generator determines the safe, stable, and reliable operation of the hydropower station. In order to keep the hydroelectric generator in a better state of health and avoid accidents, it is crucial to detect its faults. In recent years, fault detection methods based on sound and vibration signals have gradually become research hotspots due to their high sensitivity, achievable continuous dynamic monitoring, and easy adaptation to complex environments. Therefore, this paper is a supplement to the existing state monitoring and fault diagnosis system of the hydroelectric generator; it divides the hydroelectric generator into two significant parts: hydro-generator and hydro-turbine, and summarizes the research and application of fault detect technology based on sound signal vibration in hydroelectric generator and introduces some new technology developments in recent years, and puts forward the existing problems in the current research and future development directions, and it is expected to provides some reference for the research on fault diagnosis of the hydroelectric generator.


2020 ◽  
Author(s):  
D.R. Marinowic ◽  
G. Zanirati ◽  
F.V.F. Rodrigues ◽  
M.V.C. Grahl ◽  
A.M. Alcará ◽  
...  

Abstract Phylogenetic analyses demonstrated that etiologic agent of pandemic outbreak is a betacoronavirus named SARS-CoV-2. For public health interventions, a diagnostic test with high sensitivity and specificity is required. The gold standard protocol for diagnosis by WHO is the RT-PCR. To detect low viral load and large-scale screening a low-cost diagnostic test becomes necessary. Here we develop a cost-effective test capable of to detect the new coronavirues. We validated an auxiliary protocol for molecular diagnosis with RT-PCR SYBR Green methodology to successfully screen negative cases of SARS-CoV-2. Our results demonstrated that a set of primers with high specificity, and no homology with other viruses from Coronovideae family or human respiratory tract pathogenic viruses. Optimization of annealing temperature and polymerization time led to an high specificity in the PCR products. We have developed a more affordable and swift methodology for negative SARS-CoV-2 screening. This methodology can be applied on large scale populational to soften panic and economic burden through guidance for isolation strategies.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 17
Author(s):  
Imad Abrao Nemeir ◽  
Lynn Mouawad ◽  
Joseph Saab ◽  
Walid Hleihel ◽  
Abdelhamid Errachid ◽  
...  

Breast cancer is the leading cancer type for women with two million new yearly infections and more than half a million dead worldwide. Human Epidermal Receptor 2 (HER2) is a prominent breast cancer biomarker that indicates aggressive cancer and is often associated with a bad prognosis and low survival rates. However, current detection methods for HER2 are often time-consuming, expensive, and require a high level of expertise. Biosensors are devices that turn biological interaction into a readable electronic signal; they are known for their high specificity and selectivity for low concentration, as well as their low cost and ease of use, thus making them a better alternative to traditional methods. Also, saliva is becoming a better alternative to blood for the detection of biomarkers due to its non-invasive collection in large quantities with simple collection methods with a richness in disease biomarkers including HER2. Thus, this project aims to develop a label-free, low cost, electrochemical biosensor for the detection of HER2 in saliva. This was done by first depositing diazonium salt onto a screen-printed electrode (SPE) through cyclic voltammetry, then immobilizing anti-HER2 antibodies on the activated SPE using 1-ethyl-3-(3-dimethylamino) propyl carbodiimide/N-hydroxysuccinimide. HER2 biomarker concentrations were detected using electrochemical impedance spectroscopy inside a microfluidic system. The biosensor showed a higher linear detection of HER2 (Y = 0.0062X + 0.1066/R2 = 0.9909) in its physiological concentration range of 5 and 40 pg/mL when compared to other interference proteins: Epidermal Growth Factor Receptor (Y = 0.0016X + 0.0188/R2 = 0.8072) and Human Epidermal Receptor 3 (Y = (0.0035X + 0.0225/R2 = 0.1302). The biosensor was then used to detect 10 pg/mL of HER2 concentration in real saliva using the standard addition methods (Y = 0.0118X + 0.1282/R2 = 0.9876).


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mohammed Hag-Ali ◽  
Abdul Salam AlShamsi ◽  
Linda Boeijen ◽  
Yasser Mahmmod ◽  
Rashid Manzoor ◽  
...  

AbstractIn January 2020, the coronavirus disease was declared, by the World Health Organization as a global public health emergency. Recommendations from the WHO COVID Emergency Committee continue to support strengthening COVID surveillance systems, including timely access to effective diagnostics. Questions were raised about the validity of considering the RT-PCR as the gold standard in COVID-19 diagnosis. It has been suggested that a variety of methods should be used to evaluate advocated tests. Dogs had been successfully trained and employed to detect diseases in humans. Here we show that upon training explosives detection dogs on sniffing COVID-19 odor in patients’ sweat, those dogs were able to successfully screen out 3249 individuals who tested negative for the SARS-CoV-2, from a cohort of 3290 individuals. Additionally, using Bayesian analysis, the sensitivity of the K9 test was found to be superior to the RT-PCR test performed on nasal swabs from a cohort of 3134 persons. Given its high sensitivity, short turn-around-time, low cost, less invasiveness, and ease of application, the detection dogs test lends itself as a better alternative to the RT-PCR in screening for SARS-CoV-2 in asymptomatic individuals.


Sign in / Sign up

Export Citation Format

Share Document