scholarly journals Long-term Material Properties of a Thick Concrete Wall Exposed to Ordinary Environmental Conditions in a Nuclear Reactor Building: the Contribution of Cement Hydrates and Feldspar Interaction

2019 ◽  
Vol 17 (5) ◽  
pp. 195-215 ◽  
Author(s):  
Jiří Rymeš ◽  
Ippei Maruyama ◽  
Ryu Shimamoto ◽  
Atsushi Tachibana ◽  
Yoshihito Tanaka ◽  
...  
Author(s):  
Hirofumi Fujii ◽  
Kazuhiko Hara ◽  
Shugo Hashimoto ◽  
Kohei Hayashi ◽  
Hidekazu Kakuno ◽  
...  

Abstract We have investigated the status of the nuclear debris in the Unit-2 Nuclear Reactor of the Fukushima Daiichi Nuclear Power plant by the method called Cosmic Muon Radiography. In this measurement, the muon detector was placed outside of the reactor building as was the case of the measurement for the Unit-1 Reactor. Compared to the previous measurements, the detector was down-sized, which made us possible to locate it closer to the reactor and to investigate especially the lower part of the fuel loading zone. We identified the inner structures of the reactor such as the containment vessel, pressure vessel and other objects through the thick concrete wall of the reactor building. Furthermore, the observation showed existence of heavy material at the bottom of the pressure vessel, which can be interpreted as the debris of melted nuclear fuel dropped from the loading zone.


2016 ◽  
Vol 43 (2) ◽  
pp. 172-180 ◽  
Author(s):  
ALICE B. KELLY ◽  
A. CLARE GUPTA

SUMMARYThis study considers the issue of security in the context of protected areas in Cameroon and Botswana. Though the literature on issues of security and well-being in relation to protected areas is extensive, there has been less discussion of how and in what ways these impacts and relationships can change over time, vary with space and differ across spatial scales. Looking at two very different historical trajectories, this study considers the heterogeneity of the security landscapes created by Waza and Chobe protected areas over time and space. This study finds that conservation measures that various subsets of the local population once considered to be ‘bad’ (e.g. violent, exclusionary protected area creation) may be construed as ‘good’ at different historical moments and geographical areas. Similarly, complacency or resignation to the presence of a park can be reversed by changing environmental conditions. Changes in the ways security (material and otherwise) has fluctuated within these two protected areas has implications for the long-term management and funding strategies of newly created and already existing protected areas today. This study suggests that parks must be adaptively managed not only for changing ecological conditions, but also for shifts in a protected area's social, political and economic context.


2008 ◽  
Vol 48 (3) ◽  
pp. 296 ◽  
Author(s):  
C. J. Birch ◽  
G. McLean ◽  
A. Sawers

This paper reports on the use of APSIM – Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004–05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004–05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004–05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.


2001 ◽  
Vol 708 ◽  
Author(s):  
Alex Jen ◽  
Robert Neilsen ◽  
Bruce Robinson ◽  
William H. Steier ◽  
Larry Dalton

ABSTRACTA number of material properties must be optimized before organic electro-optic materials can be used for practical device applications. These include electro-optic activity, optical transparency, and stability including both thermal and photochemical stability. Exploiting an improved understanding of the structure/function relationships, we have recently prepared materials exhibiting electro-optic coefficients of greater than 50 pm/V and optical loss values of less than 0.7 dB/cm at the telecommunication wavelengths of 1.3 and 1.55 microns. When oxygen is excluded to a reasonable extent, long-term photostability to optical power levels of 20 mW has been observed. Photostability is further improved by addition of scavengers and by lattice hardening. Long-term (greater than 1000 hours) thermal stability of poling-induced electro-optic activity is also observed at elevated temperatures (greater than 80°C) when appropriate lattice hardening is used. The successful improvement of organic electro-optic materials rests upon (1) attention to the design of chromophore structure including design to inhibit unwanted intermolecular electrostatic interactions and to improve chromophore instability and (2) attention to processing conditions including those involved in spin casting, electric field poling, and lattice hardening. A particularly attractive new direction has been the exploitation of dendrimer structures and particularly of multi-chromophore containing dendrimer structures. This approach has permitted the simultaneous improvement of all material properties. Development of new materials has facilitated the fabrication of a number of prototype devices and most recently has permitted investigation of the incorporation of electro-optic materials into photonic bandgap and microresonator structures. The latter are relevant to active wavelength division multiplexing (WDM). Significant quality factors (greater than 10,000) have been realized for such devices permitting wavelength discrimination at telecommunication wavelengths of 0.01 nm.


2020 ◽  
Author(s):  
Evrim Oyguc ◽  
Abdul Hayır ◽  
Resat Oyguc

Increasing energy demand urge the developing countries to consider different types of energy sources. Owing the fact that the energy production capacity of renewable energy sources is lower than a nuclear power plant, developed countries like US, France, Japan, Russia and China lead to construct nuclear power plants. These countries compensate 80% of their energy need from nuclear power plants. Further, they periodically conduct tests in order to assess the safety of the existing nuclear power plants by applying impact type loads to the structures. In this study, a sample third-generation nuclear reactor building has been selected to assess its seismic behavior and to observe the crack propagations of the prestressed outer containment. First, a 3D model has been set up using ABAQUS finite element program. Afterwards, modal analysis is conducted to determine the mode shapes. Nonlinear dynamic time history analyses are then followed using an artificial strong ground motion which is compatible with the mean design spectrum of the previously selected ground motions that are scaled to Eurocode 8 Soil type B design spectrum. Results of the conducted nonlinear dynamic analyses are considered in terms of stress distributions and crack propagations.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2256
Author(s):  
Yoichi Sato ◽  
Yutaro Kinoshita ◽  
Miho Mogamiya ◽  
Eri Inomata ◽  
Masakazu Hoshino ◽  
...  

The green macroalga Ulva prolifera has a number of variants, some of which are asexual (independent from sexual variants). Although it has been harvested for food, the yield is decreasing. To meet market demand, developing elite cultivars is required. The present study investigated the genetic stability of asexual variants, genotype (hsp90 gene sequences) and phenotype variations across a temperature gradient (10–30 °C) in an apomictic population. Asexual variants were collected from six localities in Japan and were isolated as an unialgal strain. The hsp90 gene sequences of six strains were different and each strain included multiple distinct alleles, suggesting that the strains were diploid and heterozygous. The responses of growth and sporulation versus temperature differed among strains. Differences in thermosensitivity among strains could be interpreted as the result of evolution and processes of adaptation to site-specific environmental conditions. Although carbon content did not differ among strains and cultivation temperatures, nitrogen content tended to increase at higher temperatures and there were differences among strains. A wide variety of asexual variants stably reproducing clonally would be advantageous in selecting elite cultivars for long-term cultivation. Using asexual variants as available resources for elite cultivars provides potential support for increasing the productivity of U. prolifera.


2021 ◽  
Vol 2 (4) ◽  
pp. 398-411
Author(s):  
Jinho Song

Scientific issues that draw international attention from the public and experts during the last 10 years after the Fukushima accident are discussed. An assessment of current severe accident analysis methodology, impact on the views of nuclear reactor safety, dispute on the safety of fishery products, discharge of radioactive water to the ocean, status of decommissioning, and needs for long-term monitoring of the environment are discussed.


2019 ◽  
Vol 46 ◽  
pp. 68-83
Author(s):  
Barbara Horejs

This paper provides an overview of our current knowledge about the transformation towards the Neolithic in western Anatolia and the Aegean, and offers a narrative for their interpretation. Within the longue durée perspective of the long revolution in the Near East, the first millennia of the Holocene of the Aegean and western Anatolia are contrasted with each other. Economic strategies, environmental conditions, technologies, raw material procurement and cultural practices in the Aegean Mesolithic and the Pre-Neolithic times in western Anatolia are analysed to classify potential similarities and differences. The evidence of new cultural and symbolic practices, eco-nomies, and technologies in the seventh millennium is discussed as the paradox of a short revolu-tion embedded in a long-term process of interaction, knowledge-transfer and adaptation, setting the scene for the Neolithic pioneers establishing a new social life.


Sign in / Sign up

Export Citation Format

Share Document