scholarly journals Highlights on Chaetomium morphology, secondary metabolites and biological activates

2020 ◽  
Vol 4 (1) ◽  
pp. 01-05
Author(s):  
Waill Elkhateeb

Endophytic fungi always attract attention due to their generous production of bioactive and chemically novel compounds that have medical, agriculture, industrial applications. This review focused on Chaetomium as a model of endophytic fungi rich in therapeutic agents that have known medicinal and industrial application. Moreover, understanding the importance of this potent fungus encourage further studies to identify novel metabolites, and at the same time employing already known metabolites to evaluate their activity in order to be used in additional applications.

2019 ◽  
Vol 3 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Peter M. Eze ◽  
Joy C. Nnanna ◽  
Ugochukwu Okezie ◽  
Happiness S. Buzugbe ◽  
Chika C. Abba ◽  
...  

AbstractEndophytic fungi associated with Nigerian plants have recently generated significant interest in drug discovery programmes due to their immense potential to contribute to the discovery of new bioactive compounds. This study was carried out to investigate the secondary metabolites of endophytic fungi isolated from leaves ofNewbouldia laevis, Ocimum gratissimum, andCarica papayaThe plants were collected from Agulu, Anambra State, South-East Nigeria. Endophytic fungal isolation, fungal fermentation; and extraction of secondary metabolites were carried out using standard methods. The crude extracts were screened for antimicrobial activities using the agar well diffusion method, and were also subjected to high performance liquid chromatography (HPLC) analysis to identify their constituents. A total of five endophytic fungi was isolated, two fromN. laevis(NL-L1 and NL-L2), one fromO. gratissimum(SL-L1), and two fromC. papaya(PPL-LAC and PPL-LE2). In the antimicrobial assay, the extracts of NL-L2, SL-L1, and PPL-LE2 displayed mild antibacterial activity against both Gram negative and Gram positive test bacteria. PPL-LAC extract showed mild activity only againstS. aureus, while no antimicrobial activity was recorded for NL-L1 extract. All the endophytic fungal extracts showed no activity against the test fungiC. albicansandA. fumigatusHPLC analysis of the fungal extracts revealed the presence of ethyl 4-hydroxyphenyl acetate and ferulic acid in NL-L1; ruspolinone in NL-L2; protocatechuic acid, scytalone, and cladosporin in SL-L1; indole-3-acetic acid and indole-3-carbaldehyde in PPL-LE2; and indole-3-acetic acid in PPL-LAC. The findings of this study revealed the potentials possessed by these plants as source of endophytes that express biological active compounds. These endophytes hold key of possibilities to the discovery of novel molecules for pharmaceutical, agricultural and industrial applications.


2021 ◽  
Author(s):  
Bianca R. Albuquerque ◽  
Sandrina A. Heleno ◽  
M. Beatriz P. P. Oliveira ◽  
Lillian Barros ◽  
Isabel C. F. R. Ferreira

Phenolic compounds (PC) are secondary metabolites with interesting bioactivities that have been explored for industrial application. PC bioactivity depends on their chemical structure integrity, so, methods to increase PC stability have been developed.


2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


2019 ◽  
Vol 19 (2) ◽  
pp. 114-118
Author(s):  
Gian Luigi Mariottini ◽  
Irwin Darren Grice

Natural compounds extracted from organisms and microorganisms are an important resource for the development of drugs and bioactive molecules. Many such compounds have made valuable contributions in diverse fields such as human health, pharmaceutics and industrial applications. Presently, however, research on investigating natural compounds from marine organisms is scarce. This is somewhat surprising considering that the marine environment makes a major contribution to Earth's ecosystems and consequently possesses a vast storehouse of diverse marine species. Interestingly, of the marine bioactive natural compounds identified to date, many are venoms, coming from Cnidarians (jellyfish, sea anemones, corals). Cnidarians are therefore particularly interesting marine species, producing important biological compounds that warrant further investigation for their development as possible therapeutic agents. From an experimental aspect, this review aims to emphasize and update the current scientific knowledge reported on selected biological activity (antiinflammatory, antimicrobial, antitumoral, anticoagulant, along with several less studied effects) of Cnidarian venoms/extracts, highlighting potential aspects for ongoing research towards their utilization in human therapeutic approaches.


2021 ◽  
Vol 4 (2) ◽  
pp. 01-06
Author(s):  
Waill Elkhateeb

Fungi generally and mushrooms secondary metabolites specifically represent future factories and potent biotechnological tools for the production of bioactive natural substances, which could extend the healthy life of humanity. The application of microbial secondary metabolites in general and mushrooms metabolites in particular in various fields of biotechnology has attracted the interests of many researchers. This review focused on Lentinus, Pleurotus, and Tremella as a model of edible mushrooms rich in therapeutic agents that have known medicinal applications.


2021 ◽  
Vol 14 (11) ◽  
pp. 1145
Author(s):  
Chabaco Armijos ◽  
Jorge Ramírez ◽  
Melissa Salinas ◽  
Giovanni Vidari ◽  
Alírica I. Suárez

The use of plants as therapeutic agents is part of the traditional medicine that is practiced by many indigenous communities in Ecuador. The aim of this study was to update a review published in 2016 by including the studies that were carried out in the period 2016–July 2021 on about 120 Ecuadorian medicinal plants. Relevant data on raw extracts and isolated secondary metabolites were retrieved from different databases, resulting in 104 references. They included phytochemical and pharmacological studies on several non-volatile compounds, as well as the chemical composition of essential oils (EOs). The tested biological activities are also reported. The potential of Ecuadorian plants as sources of products for practical applications in different fields, as well the perspectives of future investigations, are discussed in the last part of the review.


2021 ◽  
Vol 21 (4) ◽  
pp. 1016
Author(s):  
Antonius Rolling Basa Ola ◽  
Titus Lapailaka ◽  
Hermania Em Wogo ◽  
Julinda Bendalina Dengga Henuk ◽  
Agnes Simamora ◽  
...  

Mangrove forest has a distinctive habitat adapting with marine and terrestrial environment. Chemical investigation of the extract from mangrove endophytic fungi Nigrospora oryzae had resulted in the isolation of sterigmatocystin (1) and pestalopyrone (2). The structure of sterigmatocystin (1) and pestalopyrone (2) were elucidated using mass, UV and NMR spectrometers together with the comparison with the literature data. The study also showed that sterigmatocystin displayed moderate cytotoxicity but it could be further developed as antiviral and antibacterial agent based on the SAR information reported from its analogue and derivatives.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379 ◽  
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


Sign in / Sign up

Export Citation Format

Share Document