scholarly journals Characterization and profiling of polyphenolics of Brassica microgreens by LC-HRMS/MS and the effect under LED light

2021 ◽  
Vol 14 ◽  
Author(s):  
Oday Alrifai ◽  
Lili Mats ◽  
Ronghua Liu ◽  
Honghui Zhu ◽  
Xiuming Hao ◽  
...  

An untargeted approach to profiling of polyphenolics of Brassicaceae microgreens was employed to characterize the phenolic composition in microgreens grown under 8 different treatments of combined amber (590 nm), blue (455 nm), and red (655 nm) LED, using full MS and HRMS/MS-ESI. Hydroxycinnamic acid (HCA) derivatives predominated the pool of phenolics in the microgreens, followed by free phenolic acids and flavonol glycosides/acylglycosides, with most of the HCA derivatives existing as malate esters. Most HCA malates in mustard (Barbarossa) and all HCA malates in mizuna (red kingdom)/ radish (red Rambo, organic) were significantly decreased under most treatments, whereas all malates were overall increased under combined lighting in radish (red Rambo), mustard (Garnet Giant), mizuna (organic), Pac choi (red Pac) and mustard (Scarlet Frills). The present study demonstrated that amber in combination with blue and red LED contributed to the altered phenolic profile and increase and/or decrease in quantity of certain phenolic compounds, particularly the HCA malates.

Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1262 ◽  
Author(s):  
Anna Oniszczuk ◽  
Kamila Kasprzak ◽  
Agnieszka Wójtowicz ◽  
Tomasz Oniszczuk ◽  
Marta Olech

Buckwheat is a generous source of phenolic compounds, vitamins and essential amino acids. This paper discusses the procedure of obtaining innovative gluten-free, precooked pastas from roasted buckwheat grains flour, a fertile source of natural antioxidants, among them, phenolic acids. The authors also determined the effect of the extruder screw speed and the level of moisture content in the raw material on the quantity of free phenolic acids. The qualitative and quantitative analysis of phenolic acids in pasta was carried out using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The chromatographic method was validated. For extracts with the highest total content of free phenolic acids and unprocessed flour from roasted buckwheat grain, the TLC-DPPH test was also performed to determine the antioxidant properties of the tested pasta. The level of moisture in the raw material had an impact on the content of phenolic acids. All pastas made from buckwheat flour moistened up to 32% exhibited a higher total content of free phenolic acids than other mixes moistened to 30 and 34% of water.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 190
Author(s):  
Ziyun Xu ◽  
Maninder Meenu ◽  
Pengyu Chen ◽  
Baojun Xu

This study aimed to systematically assess the phenolic profiles and antioxidant capacities of 21 chestnut samples collected from six geographical areas of China. All these samples exhibit significant differences (p < 0.05) in total phenolic contents (TPC), total flavonoids content (TFC), condensed tannin content (CTC) and antioxidant capacities assessed by DPPH free radical scavenging capacity (DPPH), ABTS free radical scavenging capacities (ABTS), ferric reducing antioxidant power (FRAP), and 14 free phenolic acids. Chestnuts collected from Fuzhou, Jiangxi (East China) exhibited the maximum values for TPC (2.35 mg GAE/g), CTC (13.52 mg CAE/g), DPPH (16.74 μmol TE/g), ABTS (24.83 μmol TE/g), FRAP assays (3.20 mmol FE/100 g), and total free phenolic acids (314.87 µg/g). Vanillin and gallic acids were found to be the most abundant free phenolic compounds among other 14 phenolic compounds detected by HPLC. Overall, the samples from South China revealed maximum mean values for TPC, CTC, DPPH, and ABTS assays. Among the three chestnut varieties, Banli presented prominent mean values for all the assays. These finding will be beneficial for production of novel functional food and developing high-quality chestnut varieties.


2011 ◽  
Vol 80 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Marcin Horbowicz ◽  
Grzegorz Chrzanowski ◽  
Danuta Koczkodaj ◽  
Joanna Mitrus

The effect of methyl jasmonate (MJ) vapors on content of phenolic compounds: free phenolic acids, total quercetin, and total phenolics in etiolated buckwheat seedlings were studied. The data presented show that low concentration of MJ (10<sup>-8</sup> M) had no influence on <em>trans</em>-cinnamic acid (CA), but stimulated the accumulation of chlorogenic acid in hypocotyls and cotyledons of buckwheat seedlings. A moderate dose of MJ (10<sup>-6</sup> M) did not change the level of chlorogenic acid in the hypocotyls and cotyledons, but CA synthesis was promoted in cotyledons, whereas in hypocotyls no significant effect was found. Highest concentration of MJ (10<sup>-4</sup> M) caused small decline of CA in hypocotyls, but large stimulation of the acid production in cotyledons was noted. MJ had stimulatory effect on caffeic acid forming, but inhibited synthesis of vanillic acid in hypocotyls and cotyledons. Lowest concentration of MJ (10<sup>-8</sup> M) elicited accumulation of quercetin glycosides in both studied tissues of buckwheat seedlings, however at higher doses (10<sup>-8</sup> and 10<sup>-4</sup> M) did not affect the flavonol level. The obtained results suggest that nonequivalent influence of methyl jasmonate on the phenolics composition can be a result of various mechanisms of MJ uptake, transforming and/or its translocation in buckwheat hypocotyls and cotyledons. Decline of anthocyanins level in buckwheat hypocotyls caused by MJ cannot be explained by enhanced accumulation of quercetin glycosides or free phenolic acids, but probably by synthesis of other unknown phenolic compounds.


2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Gautam Gaur ◽  
Jee-Hwan Oh ◽  
Pasquale Filannino ◽  
Marco Gobbetti ◽  
Jan-Peter van Pijkeren ◽  
...  

ABSTRACT Phenolic acids are among the most abundant phenolic compounds in edible parts of plants. Lactic acid bacteria (LAB) metabolize phenolic acids, but the enzyme responsible for reducing hydroxycinnamic acids to phenylpropionic acids (HcrB) was only recently characterized in Lactobacillus plantarum. In this study, heterofermentative LAB species were screened for their hydroxycinnamic acid metabolism. Data on strain-specific metabolism in combination with comparative genomic analyses identified homologs of HcrB as putative phenolic acid reductases. Par1 and HcrF both encode putative multidomain proteins with 25% and 63% amino acid identity to HcrB, respectively. Of these genes, par1 in L. rossiae and hcrF in L. fermentum were overexpressed in response to hydroxycinnamic acids. The deletion of par1 in L. rossiae led to the loss of phenolic acid metabolism. The strain-specific metabolism of phenolic acids was congruent with the genotype of lactobacilli; however, phenolic acid reductases were not identified in strains of Weissella cibaria that reduced hydroxycinnamic acids to phenylpropionic acids. Phylogenetic analysis of major genes involved in hydroxycinnamic acid metabolism in strains of the genus Lactobacillus revealed that Par1 was found to be the most widely distributed phenolic acid reductase, while HcrB was the least abundant, present in less than 9% of Lactobacillus spp. In conclusion, this study increased the knowledge on the genetic determinants of hydroxycinnamic acid metabolism, explaining the species- and strain-specific metabolic variations in lactobacilli and providing evidence of additional enzymes involved in hydroxycinnamic acid metabolism of lactobacilli. IMPORTANCE The metabolism of secondary plant metabolites, including phenolic compounds, by food-fermenting lactobacilli is a significant contributor to the safety, quality, and nutritional quality of fermented foods. The enzymes mediating hydrolysis, reduction, and decarboxylation of phenolic acid esters and phenolic acids in lactobacilli, however, are not fully characterized. The genomic analyses presented here provide evidence for three novel putative phenolic acid reductases. Matching comparative genomic analyses with phenotypic analysis and quantification of gene expression indicates that two of the three putative phenolic acid reductases, Par1 and HcrF, are involved in reduction of hydroxycinnamic acids to phenylpropionic acids; however, the activity of Par2 may be unrelated to phenolic acids and recognizes other secondary plant metabolites. These findings expand our knowledge on the metabolic potential of lactobacilli and facilitate future studies on activity and substrate specificity of enzymes involved in metabolism of phenolic compounds.


2013 ◽  
Vol 19 (No. 6) ◽  
pp. 201-205 ◽  
Author(s):  
R. Amarowicz ◽  
S. Weidner

Phenolic compounds were extracted from rye caryopses with 80% (v/v) methanol. Phenolic acids were determined as free compounds and those liberated from soluble esters and glycosides. The analyses were performed using a Waters HPLC system equipped with a diode array detector (DAD). The following free phenolic acids were found: p-coumaric, ferulic and sinapic; the phenolic acids liberated from soluble esters were as follows: vanillic, caffeic, p-coumaric, ferulic and sinapic; and those liberated from soluble glycosides were the following: vanillic, p-coumaric, ferulic and sinapic. In rye caryopses, phenolic acids were chiefly in the form of soluble esters. A diode array detector was especially useful for the determination of vanillic acid: the UV spectrum of this compound showed a maximum at 260 nm whereas UV spectra of other phenolic acids were characterised by maxima at longer wavelengths.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5627
Author(s):  
Agnieszka Krzymińska ◽  
Monika Gąsecka ◽  
Zuzanna Magdziak

The study focused on the determination of phenolic acids, flavonoids and organic acids in five tulip cultivars ‘Barcelona’, ‘Columbus’, ‘Strong Gold’, ‘Super Parrot’ and ‘Tropicana’. The cultivars grown in field and in a greenhouse were exposed after cutting to different times of storage (0, 3 and 6 days). The phenolic profile contained 4-hydroxybenzoic, 2,5-dihydroxybenzoic, gallic, vanillic, syringic, salicylic, protocatechuic, trans-cinnamic, p-coumaric, caffeic, ferulic, chlorogenic and sinapic acids, as well as quercetin, rutin, luteonin, catechin and vitexin. The mean phenolic acid content was in the following order: ‘Columbus’ and ‘Tropicana’ > ’Barcelona’ > ’Strong Gold’ > ’Super Parrot’, while the levels of flavonoids were as follows: ‘Strong Gold’ > ’Barcelona’ > ’Tropicana’ > ’Columbus’ > ’Super Parrot’. The highest content of phenolic acids was confirmed for Columbus and Tropicana, while the lowest was for Super Parrot. However total phenolic content was very similar, observed between the place of cultivation, time of storage and cultivars. Malonic, succinic, acetic and citric acids were the major organic acid components in tulip petals. More organic acids (except malonic) were accumulated in tulip petals from fields than those from the greenhouse, while changes during storage were strictly correlated with cultivars.


2021 ◽  
Vol 78 (3) ◽  
Author(s):  
Jakub Brozdowski ◽  
Boguslawa Waliszewska ◽  
Sasa Gacnik ◽  
Metka Hudina ◽  
Robert Veberic ◽  
...  

Abstract Key Message The best yields in the extraction of hydroxycinnamic acids, flavanols and total phenolics from black cherry flowers were obtained with 40% ethanol and the poorest with water. A 30% higher content of total phenolics was obtained from leaves by using methanol rather than water. Context Black cherry (Prunus serotina Erhr.) is widespread in Europe. Because it is an invasive species, most research has been aimed at trying to find a method to remove this shrub from forests. The incentive for the development of the research was that we were trying to find a possible folk use of black cherry leaves and flowers. Aims The aim of this work was to study the detailed phenolic profile of extracts of P. serotina leaves and flowers. Methods Three types of extracts of P. serotina were made. The extracts were analysed for differences in phenolics content based on different extraction methods. HPLC-MSn was used to identify the phenolic compounds, and HPLC–DAD was used for their quantification. Results The results show that different extraction methods result in differences in the amount of extractables. Flavanols are the main group of identified compounds in both leaves and flowers. A larger extraction efficiency leads to a higher amount of phenolics in the flowers compared to leaves (49.8 vs. 36.5 g/kg dry weight). No difference was detected in the amount of phenolics between water extracts of leaves and flowers. Each extract can be considered rich in phenolics. Conclusion This work shows that leaves and flowers of P. serotina are a rich source of phenolic compounds. We provide interesting results that might be of interest in the industrial valuation of several compounds.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 120 ◽  
Author(s):  
Susana Río Segade ◽  
Maria Alessandra Paissoni ◽  
Mar Vilanova ◽  
Vincenzo Gerbi ◽  
Luca Rolle ◽  
...  

Plant proteins have been proposed as an alternative to animal-origin proteins in the wine industry because they are allergen-free and vegan-friendly. The aim of this study was to evaluate the effectiveness of plant proteins as fining agents on red wines with different phenolic composition. Two formulations for commercially available vegetal proteins (potato and pea origin) were assessed at two doses to modulate the fining treatment to the wine phenolic profile. The results evidenced that fining agents derived from plants have different levels of effectiveness on the removal of phenolic compounds depending on the origin, the formulation used, dose applied, and also wine characteristics. On Nebbiolo wine, the study was particularly significant due to its phenolic composition. One pea-based fining agent had an effect comparable to gelatin (animal origin) on the removal of polymeric flavanols with a minor loss of anthocyanins and therefore better preserving the wine color in terms of intensity and hue. For Primitivo, Montepulciano, and Syrah wines, even though there was a formulation-dependent effect, vegetal proteins gave more balanced reductions in terms of target phenolic compounds contributing to astringency and color perception.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1044
Author(s):  
José L. Ordóñez-Díaz ◽  
Vanessa Cardeñosa ◽  
José M. Muñoz-Redondo ◽  
Federico Ferreres ◽  
Gema Pereira-Caro ◽  
...  

This study evaluated the phenolic profile and the antioxidant capacity of strawberries (Fragaria x ananassa Duch., cv. Primoris) cultivated under reduction of nitrogen and adverse irrigation conditions (high salinity), such as those prevailing in Almeria (south-eastern Spain). The phenolic compound and anthocyanin profiles were analysed by HPLC-DAD-ESI/MSn, and the antioxidant activity. Nineteen phenolic compounds were quantified, mainly ellagitannins, anthocyanins, and flavan-3-ols. The total phenolic content ranged from 731 to 1521 mg/100 g of dried weight. The flavan-3-ols group compounds from the strawberries were positively affected by saline stress, especially the afz-(e)Catechin content in the first sampling. The reduction of nitrogen and the adverse irrigation conditions for the cultivation of strawberries (cv. Primoris) partially affected the phenolic composition, with the harvesting dates having a greater influence.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 77
Author(s):  
Chang Ha Park ◽  
Ye Eun Park ◽  
Hyeon Ji Yeo ◽  
Jae Kwang Kim ◽  
Sang Un Park

Recent improvements in light-emitting diode (LED) technology afford an excellent opportunity to investigate the relationship between different light sources and plant metabolites. Accordingly, the goal of the present study was to determine the effect of different LED (white, blue, and red) treatments on the contents of glucosinolates (glucoiberin, gluconapin, sinigrin, gluconasturtiin, 4-methoxyglucobrassicin, 4-hydroxyglucobrassicin, glucobrassicin, and neoglucobrassicin) and phenolic compounds (4-hydroxybenzonate, catechin, chlorogenic acid, caffeate, gallate, sinapate, and quercetin) in Brassica juncea sprouts. The sprouts were grown in a growth chamber at 25 °C under irradiation with white, blue, or red LED with a flux rate of 90 μmol·m−2·s−1 and a long-day photoperiod (16 h light/8 h dark cycle). Marked differences in desulfoglucosinolate contents were observed in response to treatment with different LEDs and different treatment durations. In addition, the highest total desulfoglucosinolate content was observed in response to white LED light treatment, followed by treatment with red LED light, and then blue LED light. Among the individual desulfoglucosinolates identified in the sprouts, sinigrin exhibited the highest content, which was observed after three weeks of white LED light treatment. The highest total phenolic contents were recorded after one week of white and blue LED light treatment, whereas blue LED irradiation increased the production of most of the phenolic compounds identified, including 4-hydroxybenzonate, gallate, sinapate, caffeate, quercetin, and chlorogenic acid. The production of phenolics decreased gradually with increasing duration of LED light treatment, whereas anthocyanin accumulation showed a progressive increase during the treatment. These findings indicate that white LED light is appropriate for glucosinolate accumulation, whereas blue LED light is effective in increasing the production of phenolic compounds in B. juncea sprouts.


Sign in / Sign up

Export Citation Format

Share Document